搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于反射系数估算的半空间边界阻抗和声源直接辐射重构

周达仁 卢奂采 程相乐 McFarland D. Michael

引用本文:
Citation:

基于反射系数估算的半空间边界阻抗和声源直接辐射重构

周达仁, 卢奂采, 程相乐, McFarland D. Michael

Reconstruction of half-space boundary impedance and sound source direct radiation based on reflection coefficient estimation

Zhou Da-Ren, Lu Huan-Cai, Cheng Xiang-Le, McFarland D. Michael
PDF
HTML
导出引用
  • 半空间中声源直接辐射声场重构的实施需要构造以边界声阻抗为参量的半空间基函数, 边界声阻抗的获取则通常需要借助原位测量方法. 基于半空间球面波基函数叠加的声场重构方法, 通过在声源近场布置全息测量面和一支参考传声器采集声压, 并以参考传声器声压重构误差取得最小值为准则, 估算各全息测点的声压反射系数, 就能在边界阻抗未知条件下实现声源直接辐射声压的重构, 从而摆脱了常规方法对声阻抗原位测量技术的依赖. 本文的目的是对这一方法进行详细的参数讨论, 并在估算声压反射系数的基础上, 进一步对边界声阻抗加以重构, 提出一种基于近场声全息的声阻抗测量方法. 以球形声源为例, 对声阻抗和声源直接辐射声压的重构进行了仿真, 定量地分析参考传声器坐标、边界有效流阻率和边界孔隙度随深度的降低率等参数对重构精度的影响.
    When implementing the reconstruction of the sound field radiated directly from a source located in a half-space, the half-space basis functions need to be formulated with boundary impedance as a parameter. The boundary impedance is usually obtained via in situ acoustic impedance measurement techniques. In a reconstruction method based on expansion in half-space spherical wave basis functions, a hologram surface and a single reference microphone placed in the near-field are used to collect sound pressures. The sound pressure at the reference microphone is first reconstructed and the error of the reconstructed pressure relative to the measured pressure is then calculated. The sound pressure reflection coefficient corresponding to the minimum error is chosen as the estimated value of the reflection coefficient at each of the measurement points. Thus, this method is applicable to reconstructing the directly radiated sound pressures without knowledge of the boundary impedance, without the in situ acoustic impedance measurements necessary for conventional methods. The purpose of this work is to discuss the various parameters affecting the accuracy of reconstruction. Moreover, the boundary impedance is reconstructed based on the estimation of the reflection coefficient. In this way, an acoustic impedance measurement technique implemented via the near-field acoustical holography is proposed. Taking the source to be spherical, numerical simulations are conducted to verify the proposed method of reconstructing the boundary impedance and the directly radiated sound pressures. The influences of reference microphone coordinates, the effective flow resistivity of the boundary, and the rate of decrease of porosity with depth of the boundary on the accuracy of reconstruction are quantitatively analyzed.
      通信作者: 卢奂采, huancailu@zjut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51975525, 52005443)和浙江省基础公益研究计划(批准号: LQ21E050016)资助的课题.
      Corresponding author: Lu Huan-Cai, huancailu@zjut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51975525, 52005443) and the Zhejiang Provincial Research Foundation for Basic Public Welfare Research, China (Grant No. LQ21E050016).
    [1]

    Wu S F 2008 J. Acoust. Soc. Am. 124 2680Google Scholar

    [2]

    威廉姆斯 E G 著 (卢奂采 译) 2016 傅里叶声学: 声辐射与近场声全息 (北京: 清华大学出版社) 第152—170页

    Williams E G (translated by Lu H C) 2016 Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography (Beijing: Tsinghua University Press) pp152–170 (in Chinese)

    [3]

    Luo Z W, Comesana D F, Zheng C J, Bi C X 2019 J. Sound Vib. 439 43Google Scholar

    [4]

    Lu H, Wu S F 2009 J. Acoust. Soc. Am. 125 1538Google Scholar

    [5]

    Shi Z, Xiang Y, Lu J, Wang Y, Zhang Y 2021 AIP Adv. 11 075220Google Scholar

    [6]

    Zea E, Arteaga I L 2016 J. Sound Vib. 380 129Google Scholar

    [7]

    Zea E, Arteaga I L 2019 Appl. Acoust. 149 181Google Scholar

    [8]

    Zhao X, Wu S F 2005 J. Acoust. Soc. Am. 117 555Google Scholar

    [9]

    Bi C X, Jing W Q, Zhang Y B, Lin W L 2017 J. Sound Vib. 386 149Google Scholar

    [10]

    Bi C X, Chen X Z, Zhou R, Chen J 2007 ASME J. Vib. Acoust. 129 323Google Scholar

    [11]

    毕传兴, 陈心昭, 陈剑 2004 53 4268Google Scholar

    Bi C X, Chen X Z, Chen J 2004 Acta Phys. Sin. 53 4268Google Scholar

    [12]

    Pan S W, Jiang W K, Zhang H B, Xiang S 2014 J. Acoust. Soc. Am. 136 1744Google Scholar

    [13]

    Pan S W, Jiang W K, Xiang S, Liu X J 2014 Wave Motion 51 1273Google Scholar

    [14]

    Brandão E, Lenzi A, Paul S 2015 Acta Acust. United Ac. 101 443Google Scholar

    [15]

    Tamura M 1990 J. Acoust. Soc. Am. 88 2259Google Scholar

    [16]

    Hald J, Song W, Haddad K, Jeong C, Richard A 2019 Appl. Acoust. 143 74Google Scholar

    [17]

    Richard A, Fernandez-Grande E 2019 J. Acoust. Soc. Am. 146 501Google Scholar

    [18]

    Dupont S, Melon M, Berry A 2020 J. Acoust. Soc. Am. 147 3613Google Scholar

    [19]

    Zhou D, Lu H, McFarland D M, Xiao Y 2020 J. Theor. Comput. Acous. 28 2050019Google Scholar

    [20]

    周达仁, 肖永雄, 卢奂采 2021 声学学报 46 321Google Scholar

    Zhou D R, Xiao Y X, Lu H C 2021 Acta Acust. 46 321Google Scholar

    [21]

    Morse P M, Ingard K U 1968 Theoretical Acoustics (New York: McGraw-Hill) pp370–371

    [22]

    Attenborough K 1992 J. Acoust. Soc. Am. 92 418Google Scholar

  • 图 1  半空间声场示意图 (a)声源、传声器阵列和阻抗边界的布置; (b)声源几何中心及其关于边界的镜像点与场点、阻抗边界之间的几何关系

    Fig. 1.  Schematic of the half-space sound field: (a) Setup of the source, the microphone array and the impedance boundary; (b) geometric relationship between the geometric center of the source, the mirror point, the field point and the impedance boundary.

    图 2  单位圆内部区域的网格划分

    Fig. 2.  Mesh of the region inside the unit circle.

    图 3  仿真声场示意图 (a)脉动球声源、传声器阵列、参考传声器和阻抗边界的布置; (b)阵列上传声器的编号

    Fig. 3.  Schematic of the simulated sound field: (a) Setup of the dilating sphere source, the microphone array, the reference microphone and the impedance boundary; (b) the indices of the microphones mounted on the array.

    图 4  相对误差的曲面图 (a)误差E随反射系数${R_{\rm p}}$变化的分布; (b)误差${\varepsilon ^{{\text{pres}}}}$随反射系数均值${\bar R_{\rm p}}$变化的分布

    Fig. 4.  Surface plot of the relative error: (a) The error E versus reflection coefficient ${R_{\rm p}}$; (b) the error ${\varepsilon ^{{\text{pres}}}}$ versus mean value of the reflection coefficient ${\bar R_{\rm p}}$.

    图 5  半空间总声压、声源直接辐射声压的重构值和声源直接辐射声压的理论值在阵列测点的分布

    Fig. 5.  Sound pressure distributions at the measurement points on the array, including the total values in the half-space, the reconstructed values and the benchmark values radiated directly from the source.

    图 6  声阻抗率重构的相对误差${\varepsilon ^{{\text{imp}}}}$和声源直接辐射声压重构的相对误差${\varepsilon ^{{\text{pres}}}}$随频率f的变化曲线

    Fig. 6.  Relative error of the reconstructed specific acoustic impedance ${\varepsilon ^{{\text{imp}}}}$ and the relative error of the reconstructed sound pressure ${\varepsilon ^{{\text{pres}}}}$ radiated directly from the source versus frequency f.

    图 7  声阻抗率重构的相对误差${\varepsilon ^{{\text{imp}}}}$和声源直接辐射声压重构的相对误差${\varepsilon ^{{\text{pres}}}}$随参考传声器坐标${z_{{\text{ref}}}}$的变化曲线 (a)$f = $$ 100{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{Hz}}$; (b)$f = 900{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{Hz}}$; (c)$f = 1700{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{Hz}}$; (d)$f = 2500{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{Hz}}$; (e)$f = 3300{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{Hz}}$

    Fig. 7.  Relative error of the reconstructed specific acoustic impedance ${\varepsilon ^{{\text{imp}}}}$ and the relative error of the reconstructed sound pressure ${\varepsilon ^{{\text{pres}}}}$ radiated directly from the source versus coordinate of the reference microphone ${z_{{\text{ref}}}}$: (a)$f = 100{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{Hz}}$; (b)$f = 900{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{Hz}}$; (c)$f = 1700{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{Hz}}$; (d)$f = 2500{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{Hz}}$; (e) $f = 3300{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{Hz}}$.

    图 8  声阻抗率重构的相对误差${\varepsilon ^{{\text{imp}}}}$和声源直接辐射声压重构的相对误差${\varepsilon ^{{\text{pres}}}}$随边界参数${\sigma _{\text{e}}}$的变化曲线 (a) ${z_{{\text{ref}}}} = 0{\kern 1 pt} $; (b) ${z_{{\text{ref}}}} = $$ 0.05{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{m}}$; (c) ${z_{{\text{ref}}}} = 0.10{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{m}}$; (d) ${z_{{\text{ref}}}} = 0.15{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{m}}$

    Fig. 8.  Relative error of the reconstructed specific acoustic impedance ${\varepsilon ^{{\text{imp}}}}$ and the relative error of the reconstructed sound pressure ${\varepsilon ^{{\text{pres}}}}$ radiated directly from the source versus boundary parameter ${\sigma _{\text{e}}}$: (a) ${z_{{\text{ref}}}} = 0{\kern 1 pt} $; (b) ${z_{{\text{ref}}}} = 0.05{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{m}}$; (c) ${z_{{\text{ref}}}} = 0.10{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{m}}$; (d) ${z_{{\text{ref}}}} = 0.15{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{m}}$.

    图 9  声阻抗率重构的相对误差${\varepsilon ^{{\text{imp}}}}$和声源直接辐射声压重构的相对误差${\varepsilon ^{{\text{pres}}}}$随边界参数${\alpha _{\text{e}}}$的变化曲线 (a) ${z_{{\text{ref}}}} = 0{\kern 1 pt} $; (b) ${z_{{\text{ref}}}} = 0.05{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{m}}$; (c) ${z_{{\text{ref}}}} = 0.10{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{m}}$; (d) ${z_{{\text{ref}}}} = 0.15{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{m}}$

    Fig. 9.  Relative error of the reconstructed specific acoustic impedance ${\varepsilon ^{{\text{imp}}}}$ and the relative error of the reconstructed sound pressure ${\varepsilon ^{{\text{pres}}}}$ radiated directly from the source versus boundary parameter ${\alpha _{\text{e}}}$: (a) ${z_{{\text{ref}}}} = 0{\kern 1 pt} $; (b) ${z_{{\text{ref}}}} = 0.05{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{m}}$; (c) ${z_{{\text{ref}}}} = 0.10{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{m}}$; (d) ${z_{{\text{ref}}}} = 0.15{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{m}}$.

    Baidu
  • [1]

    Wu S F 2008 J. Acoust. Soc. Am. 124 2680Google Scholar

    [2]

    威廉姆斯 E G 著 (卢奂采 译) 2016 傅里叶声学: 声辐射与近场声全息 (北京: 清华大学出版社) 第152—170页

    Williams E G (translated by Lu H C) 2016 Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography (Beijing: Tsinghua University Press) pp152–170 (in Chinese)

    [3]

    Luo Z W, Comesana D F, Zheng C J, Bi C X 2019 J. Sound Vib. 439 43Google Scholar

    [4]

    Lu H, Wu S F 2009 J. Acoust. Soc. Am. 125 1538Google Scholar

    [5]

    Shi Z, Xiang Y, Lu J, Wang Y, Zhang Y 2021 AIP Adv. 11 075220Google Scholar

    [6]

    Zea E, Arteaga I L 2016 J. Sound Vib. 380 129Google Scholar

    [7]

    Zea E, Arteaga I L 2019 Appl. Acoust. 149 181Google Scholar

    [8]

    Zhao X, Wu S F 2005 J. Acoust. Soc. Am. 117 555Google Scholar

    [9]

    Bi C X, Jing W Q, Zhang Y B, Lin W L 2017 J. Sound Vib. 386 149Google Scholar

    [10]

    Bi C X, Chen X Z, Zhou R, Chen J 2007 ASME J. Vib. Acoust. 129 323Google Scholar

    [11]

    毕传兴, 陈心昭, 陈剑 2004 53 4268Google Scholar

    Bi C X, Chen X Z, Chen J 2004 Acta Phys. Sin. 53 4268Google Scholar

    [12]

    Pan S W, Jiang W K, Zhang H B, Xiang S 2014 J. Acoust. Soc. Am. 136 1744Google Scholar

    [13]

    Pan S W, Jiang W K, Xiang S, Liu X J 2014 Wave Motion 51 1273Google Scholar

    [14]

    Brandão E, Lenzi A, Paul S 2015 Acta Acust. United Ac. 101 443Google Scholar

    [15]

    Tamura M 1990 J. Acoust. Soc. Am. 88 2259Google Scholar

    [16]

    Hald J, Song W, Haddad K, Jeong C, Richard A 2019 Appl. Acoust. 143 74Google Scholar

    [17]

    Richard A, Fernandez-Grande E 2019 J. Acoust. Soc. Am. 146 501Google Scholar

    [18]

    Dupont S, Melon M, Berry A 2020 J. Acoust. Soc. Am. 147 3613Google Scholar

    [19]

    Zhou D, Lu H, McFarland D M, Xiao Y 2020 J. Theor. Comput. Acous. 28 2050019Google Scholar

    [20]

    周达仁, 肖永雄, 卢奂采 2021 声学学报 46 321Google Scholar

    Zhou D R, Xiao Y X, Lu H C 2021 Acta Acust. 46 321Google Scholar

    [21]

    Morse P M, Ingard K U 1968 Theoretical Acoustics (New York: McGraw-Hill) pp370–371

    [22]

    Attenborough K 1992 J. Acoust. Soc. Am. 92 418Google Scholar

  • [1] 吴曼瑾, 姚柏志, 石粒力, 陈本纹, 吴敬波, 张彩虹, 金飚兵, 陈健, 吴培亨. 用于超导太赫兹探测器的低温标准黑体辐射源.  , 2022, 71(16): 168702. doi: 10.7498/aps.71.20220103
    [2] 时胜国, 高塬, 张昊阳, 杨博全. 基于单元辐射叠加法的结构声源声场重建方法.  , 2021, 70(13): 134301. doi: 10.7498/aps.70.20201971
    [3] 张揽月, 丁丹丹, 杨德森, 时胜国, 朱中锐. 阵元随机均匀分布球面阵列联合噪声源定位方法.  , 2017, 66(1): 014303. doi: 10.7498/aps.66.014303
    [4] 宋玉来, 卢奂采, 金江明. 单层传声器阵列信号空间重采样的声波分离方法.  , 2014, 63(19): 194305. doi: 10.7498/aps.63.194305
    [5] 毕传兴, 胡定玉, 张永斌, 徐亮. 基于等效源法和双面质点振速测量的声场分离方法.  , 2013, 62(8): 084301. doi: 10.7498/aps.62.084301
    [6] 陆爱江. 高温隐形材料SiBN陶瓷.  , 2013, 62(21): 217101. doi: 10.7498/aps.62.217101
    [7] 毕传兴, 郭明建, 张永斌, 徐亮. 基于声压梯度参考的部分场分解方法及实验研究.  , 2012, 61(15): 154301. doi: 10.7498/aps.61.154301
    [8] 李林茜, 石雁祥, 王飞, 魏兵. 弱电离尘埃等离子体层反射与透射的SO-FDTD方法分析.  , 2012, 61(12): 125201. doi: 10.7498/aps.61.125201
    [9] 陈志敏, 朱海潮, 毛荣富. 循环平稳声场的声源定位研究.  , 2011, 60(10): 104304. doi: 10.7498/aps.60.104304
    [10] 徐亮, 毕传兴, 王慧, 许滨, 陈心昭. 全息声压场的加权范数外推方法.  , 2011, 60(11): 114304. doi: 10.7498/aps.60.114304
    [11] 毕传兴, 张永斌, 徐亮, 陈心昭. 基于声压-振速测量的平面近场声全息实验研究.  , 2010, 59(2): 1108-1115. doi: 10.7498/aps.59.1108
    [12] 张小正, 毕传兴, 徐亮, 陈心昭. 基于波叠加法的近场声全息空间分辨率增强方法.  , 2010, 59(8): 5564-5571. doi: 10.7498/aps.59.5564
    [13] 毕传兴, 袁艳, 贺春东, 徐亮. 基于分布源边界点法的局部近场声全息技术.  , 2010, 59(12): 8646-8654. doi: 10.7498/aps.59.8646
    [14] 张永斌, 徐亮, 毕传兴, 陈心昭. 基于声压-振速测量的单面声场分离技术.  , 2009, 58(12): 8364-8371. doi: 10.7498/aps.58.8364
    [15] 孙海燕, 焦重庆, 罗积润. 回旋行波放大器输出端反射对注-波互作用的影响.  , 2009, 58(2): 925-929. doi: 10.7498/aps.58.925
    [16] 张海滨, 蒋伟康, 万 泉. 适用于循环平稳声场的基于波叠加法的近场声全息技术.  , 2008, 57(1): 313-321. doi: 10.7498/aps.57.313
    [17] 徐 亮, 毕传兴, 陈 剑, 陈心昭. 基于波叠加法的patch近场声全息及其实验研究.  , 2007, 56(5): 2776-2783. doi: 10.7498/aps.56.2776
    [18] 李卫兵, 陈 剑, 毕传兴, 陈心昭. 联合波叠加法的全息理论与实验研究.  , 2006, 55(3): 1264-1270. doi: 10.7498/aps.55.1264
    [19] 罗正明, 李泰华. 轻离子反射系数的标度公式.  , 1994, 43(1): 118-123. doi: 10.7498/aps.43.118
    [20] 潘威炎. 关于地球曲率对低频电波电离层反射系数计算的影响.  , 1981, 30(5): 661-670. doi: 10.7498/aps.30.661
计量
  • 文章访问数:  3083
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-17
  • 修回日期:  2022-01-24
  • 上网日期:  2022-06-11
  • 刊出日期:  2022-06-20

/

返回文章
返回
Baidu
map