Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Discrete data based local-to-global network reconstruction algorithm

Xu Xiang Zhu Cheng Zhu Xian-Qiang

Citation:

Discrete data based local-to-global network reconstruction algorithm

Xu Xiang, Zhu Cheng, Zhu Xian-Qiang
PDF
HTML
Get Citation
  • The structure and the function of network interact with each other. The function of network is often reflected as the dynamic process on the network. The dynamic process on the network is reflected by the behavior data in the network. Therefore, it is possible to reconstruct the network structure according to the observed data. This paper aims to solve the problem of how to restore the network topology according to the observable discrete data on the network. In this paper, an algorithm to infer the possibility of edge connection between nodes is proposed by using the similarity degree of each node corresponding to each discrete datum, and by reconstructing each local topology of the network through multiple discrete data, and by superposing the local topology obtained from multiple data, the global topology of the whole network is reconstructed finally. The data in the network are generated by SIR (Susceptible Infective Removed) model with infection probability of 0.2 and recovery probability of 1. Each time, a single node is selected as the infected node, and the final infection state of the network is counted as a network datum. In order to verify the feasibility and accuracy of the algorithm, the network reconfiguration experiments are carried out in small world, scale-free and random networks. Through the network reconstruction experiments in the networks of three different types and different scales, we can see that the performances of network reconstruction algorithm in different types of networks are different, and the average degree of network will affect the requirements for data of the network reconstruction algorithm. In order to verify the applicability of the algorithm, network reconstruction experiments are carried out on three practical networks. The results show that the algorithm can be applied to the reconstruction of large-scale networks. In order to show the accuracy of the algorithm more intuitively, we analyze the network reconstruction error after each network reconstruction experiment. The experiment shows that with the gradual increase of network data, the network reconstruction error gradually decreases and finally approaches to 0. In a nutshell, the algorithm we proposed in this work has good applicability and accuracy, and is suitable for different types of network topology reconstructions.
      Corresponding author: Zhu Cheng, zhucheng@nudt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 71571186, 61703416) and the Postgraduate Innovation Project of Hunan Province, China (Grant No. CX20190041)
    [1]

    Martinez N D 1991 Ecol. Monogr. 61 367Google Scholar

    [2]

    Oh S W, Harris J A, Ng L 2014 Nature 508 207Google Scholar

    [3]

    Watts D J, Strogatz S H 1998 Nature 393 440Google Scholar

    [4]

    Faloutsos M, Faloutsos P, Faloutsos C 1999 Sigcomm. Comput. Commun. Rev. 29 251Google Scholar

    [5]

    Scott J 1994 Sociology 22 109

    [6]

    丁香园新型冠状病毒肺炎数据 https://ncov.dxy.cn/ncovh5/view/pneumonia?from=timeline&isappinstalled=0 [2020-11-16]

    Ding Xiang Yuan COVID-19 data https://ncov.dxy.cn/ncovh5/view/pneumonia?from=timeline&isappinstalled=0. [2020-11-16] (in Chinese)

    [7]

    Bongard J, Lipson H 2007 Proc. Natl. Acad. Sci. U.S.A. 104 9943Google Scholar

    [8]

    Sugihara G, May R, Ye H 2012 Science 338 496Google Scholar

    [9]

    Marbach D, Costello J C, Küffner R 2012 Nat. Methods 9 796Google Scholar

    [10]

    Wang W X, Lai Y C, Grebogi C 2016 Phys. Rep. 644 1Google Scholar

    [11]

    Casadiego J, Nitzan M, Hallerberg S, Timme M 2017 Nat. Commun. 8 1Google Scholar

    [12]

    Nitzan M, Casadiego J, Timme M 2017 Sci. Adv. 3 e1600396Google Scholar

    [13]

    Zhao H, Li L, Peng H, Xiao J, Yang Y, Zheng M 2017 Neurocomputing 219 5

    [14]

    Granger C W 1969 Econometrica 37 424Google Scholar

    [15]

    Runge J, Bathiany S, Bollt E 2019 Nat. Commun. 10 1Google Scholar

    [16]

    Maziarz M 2015 J. Phil. Econ. 8 86

    [17]

    Zhou D, Xiao Y, Zhang Y, Xu Z, Cai D 2013 Phys. Rev. Lett. 111 054102Google Scholar

    [18]

    Wang W X, Yang R, Lai Y C 2011 EPL 94 48006Google Scholar

    [19]

    Shen Z, Wang W X, Fan Y, Di Z, Lai Y C 2014 Nat. Commun. 5 1

    [20]

    Li L, Xu D, Peng H, Kurths J, Yang Y 2017 Sci. Rep. 7 1Google Scholar

    [21]

    Zhang Z, Chen Y, Mi Y, Hu G 2019 Phys. Rev. E 99 042311

    [22]

    Hempel S, Koseska A, Kurths J, Nikoloski Z 2011 Phys. Rev. Lett. 107 3214

    [23]

    Akaike H 1973 Information Theory and an Extension of the Maximum Likelihood Principle (New York: Springer) pp199−213

    [24]

    Donges J F, Zou Y, Marwan N, Kurths J 2009 EPL 87 48007Google Scholar

    [25]

    Stetter O, Battaglia D, Soriano J, Geisel T 2012 PloS Comput. Biol. 8 e1002653Google Scholar

    [26]

    Sun J, Bollt E M 2014 Physica D 267 49Google Scholar

    [27]

    Sun J, Taylor D, Bollt E M 2015 SIAM J. Appl. Dyn. Syst. 14 73Google Scholar

    [28]

    Sharma P, Bucci D J, Brahma S K, Varshney P K 2019 IEEE T. Netw. Sci. Eng. 7 562

    [29]

    张海峰, 王文旭 2020 69 088906

    Zhang H F, Wang W X 2020 Acta Phys. Sin. 69 088906

    [30]

    张朝阳, 陈阳, 弭元元, 胡岗 2020 中国科学: 物理学 力学 天文学 1 3

    Zhang Z Y, Chen Y, Mi Y Y, Hu G 2020 Sci. Sin.: Phys. Mech. Astron. 1 3

    [31]

    Ma C, Zhang H F, Lai Y C 2017 Phys. Rev. E 96 022320

    [32]

    Wagner A 2000 Nat. Genet. 24 355Google Scholar

    [33]

    Levnajić Z 2012 arXiv: 1209.0219

    [34]

    Eagle N, Pentland A S, Lazer D 2009 Proc. Natl. Acad. Sci. U.S.A. 106 15274Google Scholar

    [35]

    Lü L, Jin C H, Zhou T 2009 Phys. Rev. E 80 046122Google Scholar

    [36]

    Clauset A, Moore C, Newman M E 2008 Nature 453 98Google Scholar

    [37]

    Taskar B, Wong M F, Abbeel P, Koller D 2004 NIPS 16 659

    [38]

    Liu W, Lü L 2010 EPL 89 58007Google Scholar

    [39]

    Ma C, Chen H S, Li X, Lai Y C, Zhang H F 2020 SIAM J. Appl. Dyn. Syst. 19 1Google Scholar

    [40]

    Pastor-Satorras R, Castellano C, Van Mieghem P, Vespignani A 2015 Rev. Mod. Phys. 87 120

    [41]

    Zhang H F, Xu F, Bao Z K, Ma C 2018 IEEE T. Circuits-I 66 4

    [42]

    Hempel S, Koseska A, Kurths J, Nikoloski Z 2011 Phys. Rev. Lett. 107 054101Google Scholar

    [43]

    Han X, Shen Z, Wang W X, Di Z 2015 Phys. Rev. Lett. 114 028701Google Scholar

    [44]

    Barabási A L, Albert R 1999 Science 286 509Google Scholar

    [45]

    Erdős P, Rényi A 1960 Publ. Math. Inst. Hung. Acad. Sci. 5 17

  • 图 1  网络初始二值数据矩阵

    Figure 1.  Initial binary data matrix of the network.

    图 2  节点1和节点2的相同感染源数量

    Figure 2.  The same number of infection sources in node 1 and node 2.

    图 3  子图重构过程

    Figure 3.  Subgraph reconstruction process.

    图 4  子图叠加过程

    Figure 4.  Subgraph superposition process.

    图 5  不同规模的WS小世界网络重构实验效果

    Figure 5.  Experimental results of WS small world network reconstruction with different scales.

    图 6  不同规模的WS小世界网络重构误差分析

    Figure 6.  Error analysis of WS small world network reconstruction with different scales.

    图 7  WS小世界网络不同平均度值对网络重构实验效果的影响

    Figure 7.  Influence of different average degrees of WS small world network on network reconstruction experiment.

    图 8  不同规模的BA无标度网络重构实验效果

    Figure 8.  Experimental results of BA scale-free network reconstruction with different scales.

    图 9  不同规模的BA小世界网络重构误差分析

    Figure 9.  Error analysis of BA scale-free network reconstruction with different scales.

    图 10  BA无标度网络不同平均度值对网络重构实验效果的影响

    Figure 10.  The influence of different average degree values of BA scale-free network on network reconstruction experiment.

    图 11  不同规模的ER随机网络重构实验效果

    Figure 11.  Experimental results of ER random network reconstruction with different scales.

    图 12  不同规模的ER小世界网络重构误差分析

    Figure 12.  Error analysis of ER random network reconstruction with different scales.

    图 13  ER随机网络不同平均度值对网络重构实验效果的影响

    Figure 13.  Influence of different average degree of ER random network on network reconstruction experiment.

    图 14  三种不同网络在相同数据下的重构效果对比

    Figure 14.  Comparison of reconstruction effects of three different networks under the same data.

    图 15  三个实际网络重构实验效果

    Figure 15.  Experimental results of three practical network reconstruction.

    图 16  三个实际网络重构误差分析

    Figure 16.  Error analysis of three practical network reconstruction.

    表 1  三类网络的基本拓扑特征

    Table 1.  Basic topological features of the three types of networks.

    WS networksNE$ \langle k\rangle $C$ \langle l\rangle $
    WS10010020040.0993.61
    WS20020040040.0784.17
    WS30030060040.0574.51
    WS40040080040.0524.74
    WS500500100040.0824.96
    WS600600120040.0625.12
    WS700700140040.0715.25
    WS800800160040.0795.43
    WS900900180040.0685.48
    WS10001000200040.0685.58
    BA networksNE$ \langle k\rangle $C$ \langle l\rangle $
    BA1001001963.920.1553.11
    BA2002003963.960.0753.41
    BA3003005963.970.0733.53
    BA4004007963.980.0683.62
    BA5005009963.980.0373.81
    BA60060011963.980.0443.77
    BA70070013963.980.0343.95
    BA80080015963.990.0233.93
    BA90090017963.990.0204.06
    BA1000100019963.990.0274.14
    ER networksNE$ \langle k\rangle $C$ \langle l\rangle $
    ER1001004879.740.1172.249
    ER200200205620.560.1032.004
    ER300300457930.650.1031.936
    ER400400793639.680.0991.917
    ER5005001228449.140.0981.909
    DownLoad: CSV

    表 2  三个实际网络的基本拓扑特征

    Table 2.  Basic topological characteristics of three practical networks.

    实际网络NE$\langle k \rangle$C$ \langle l \rangle $
    Euroroad117414172.4140.02018.371
    Minnesota264233032.5000.01735.349
    Power Grid494165942.6690.10718.989
    DownLoad: CSV
    Baidu
  • [1]

    Martinez N D 1991 Ecol. Monogr. 61 367Google Scholar

    [2]

    Oh S W, Harris J A, Ng L 2014 Nature 508 207Google Scholar

    [3]

    Watts D J, Strogatz S H 1998 Nature 393 440Google Scholar

    [4]

    Faloutsos M, Faloutsos P, Faloutsos C 1999 Sigcomm. Comput. Commun. Rev. 29 251Google Scholar

    [5]

    Scott J 1994 Sociology 22 109

    [6]

    丁香园新型冠状病毒肺炎数据 https://ncov.dxy.cn/ncovh5/view/pneumonia?from=timeline&isappinstalled=0 [2020-11-16]

    Ding Xiang Yuan COVID-19 data https://ncov.dxy.cn/ncovh5/view/pneumonia?from=timeline&isappinstalled=0. [2020-11-16] (in Chinese)

    [7]

    Bongard J, Lipson H 2007 Proc. Natl. Acad. Sci. U.S.A. 104 9943Google Scholar

    [8]

    Sugihara G, May R, Ye H 2012 Science 338 496Google Scholar

    [9]

    Marbach D, Costello J C, Küffner R 2012 Nat. Methods 9 796Google Scholar

    [10]

    Wang W X, Lai Y C, Grebogi C 2016 Phys. Rep. 644 1Google Scholar

    [11]

    Casadiego J, Nitzan M, Hallerberg S, Timme M 2017 Nat. Commun. 8 1Google Scholar

    [12]

    Nitzan M, Casadiego J, Timme M 2017 Sci. Adv. 3 e1600396Google Scholar

    [13]

    Zhao H, Li L, Peng H, Xiao J, Yang Y, Zheng M 2017 Neurocomputing 219 5

    [14]

    Granger C W 1969 Econometrica 37 424Google Scholar

    [15]

    Runge J, Bathiany S, Bollt E 2019 Nat. Commun. 10 1Google Scholar

    [16]

    Maziarz M 2015 J. Phil. Econ. 8 86

    [17]

    Zhou D, Xiao Y, Zhang Y, Xu Z, Cai D 2013 Phys. Rev. Lett. 111 054102Google Scholar

    [18]

    Wang W X, Yang R, Lai Y C 2011 EPL 94 48006Google Scholar

    [19]

    Shen Z, Wang W X, Fan Y, Di Z, Lai Y C 2014 Nat. Commun. 5 1

    [20]

    Li L, Xu D, Peng H, Kurths J, Yang Y 2017 Sci. Rep. 7 1Google Scholar

    [21]

    Zhang Z, Chen Y, Mi Y, Hu G 2019 Phys. Rev. E 99 042311

    [22]

    Hempel S, Koseska A, Kurths J, Nikoloski Z 2011 Phys. Rev. Lett. 107 3214

    [23]

    Akaike H 1973 Information Theory and an Extension of the Maximum Likelihood Principle (New York: Springer) pp199−213

    [24]

    Donges J F, Zou Y, Marwan N, Kurths J 2009 EPL 87 48007Google Scholar

    [25]

    Stetter O, Battaglia D, Soriano J, Geisel T 2012 PloS Comput. Biol. 8 e1002653Google Scholar

    [26]

    Sun J, Bollt E M 2014 Physica D 267 49Google Scholar

    [27]

    Sun J, Taylor D, Bollt E M 2015 SIAM J. Appl. Dyn. Syst. 14 73Google Scholar

    [28]

    Sharma P, Bucci D J, Brahma S K, Varshney P K 2019 IEEE T. Netw. Sci. Eng. 7 562

    [29]

    张海峰, 王文旭 2020 69 088906

    Zhang H F, Wang W X 2020 Acta Phys. Sin. 69 088906

    [30]

    张朝阳, 陈阳, 弭元元, 胡岗 2020 中国科学: 物理学 力学 天文学 1 3

    Zhang Z Y, Chen Y, Mi Y Y, Hu G 2020 Sci. Sin.: Phys. Mech. Astron. 1 3

    [31]

    Ma C, Zhang H F, Lai Y C 2017 Phys. Rev. E 96 022320

    [32]

    Wagner A 2000 Nat. Genet. 24 355Google Scholar

    [33]

    Levnajić Z 2012 arXiv: 1209.0219

    [34]

    Eagle N, Pentland A S, Lazer D 2009 Proc. Natl. Acad. Sci. U.S.A. 106 15274Google Scholar

    [35]

    Lü L, Jin C H, Zhou T 2009 Phys. Rev. E 80 046122Google Scholar

    [36]

    Clauset A, Moore C, Newman M E 2008 Nature 453 98Google Scholar

    [37]

    Taskar B, Wong M F, Abbeel P, Koller D 2004 NIPS 16 659

    [38]

    Liu W, Lü L 2010 EPL 89 58007Google Scholar

    [39]

    Ma C, Chen H S, Li X, Lai Y C, Zhang H F 2020 SIAM J. Appl. Dyn. Syst. 19 1Google Scholar

    [40]

    Pastor-Satorras R, Castellano C, Van Mieghem P, Vespignani A 2015 Rev. Mod. Phys. 87 120

    [41]

    Zhang H F, Xu F, Bao Z K, Ma C 2018 IEEE T. Circuits-I 66 4

    [42]

    Hempel S, Koseska A, Kurths J, Nikoloski Z 2011 Phys. Rev. Lett. 107 054101Google Scholar

    [43]

    Han X, Shen Z, Wang W X, Di Z 2015 Phys. Rev. Lett. 114 028701Google Scholar

    [44]

    Barabási A L, Albert R 1999 Science 286 509Google Scholar

    [45]

    Erdős P, Rényi A 1960 Publ. Math. Inst. Hung. Acad. Sci. 5 17

  • [1] Luo Kai-Ming, Guan Shu-Guang, Zou Yong. Reconstruction of simplex structures based on phase synchronization dynamics. Acta Physica Sinica, 2024, 73(12): 120501. doi: 10.7498/aps.73.20240334
    [2] He Rui-Hui, Zhang Hai-Feng, Wang Huan, Ma Chuang. Gaussian mixture model based reconstruction of undirected networks. Acta Physica Sinica, 2024, 73(17): 178901. doi: 10.7498/aps.73.20240552
    [3] Zhang Hai-Feng, Wang Wen-Xu. Complex system reconstruction. Acta Physica Sinica, 2020, 69(8): 088906. doi: 10.7498/aps.69.20200001
    [4] Kong Jiang-Tao, Huang Jian, Gong Jian-Xing, Li Er-Yu. Evaluation methods of node importance in undirected weighted networks based on complex network dynamics models. Acta Physica Sinica, 2018, 67(9): 098901. doi: 10.7498/aps.67.20172295
    [5] Li Zhao, Guo Yan-Hui, Xu Guo-Ai, Hu Zheng-Ming. Analysis of cascading dynamics in complex networks with an emergency recovery mechanism. Acta Physica Sinica, 2014, 63(15): 158901. doi: 10.7498/aps.63.158901
    [6] Li Yu-Shan, Lü Ling, Liu Ye, Liu Shuo, Yan Bing-Bing, Chang Huan, Zhou Jia-Nan. Spatiotemporal chaos synchronization of complex networks by Backstepping design. Acta Physica Sinica, 2013, 62(2): 020513. doi: 10.7498/aps.62.020513
    [7] Wang Hui, Han Jiang-Hong, Deng Lin, Cheng Ke-Qing. Dynamics of rumor spreading in mobile social networks. Acta Physica Sinica, 2013, 62(11): 110505. doi: 10.7498/aps.62.110505
    [8] Xiong Xi, Hu Yong. Research on the dynamics of opinion spread based on social network services. Acta Physica Sinica, 2012, 61(15): 150509. doi: 10.7498/aps.61.150509
    [9] Gao Zhong-Ke, Jin Ning-De, Yang Dan, Zhai Lu-Sheng, Du Meng. Complex networks from multivariate time series for characterizing nonlinear dynamics of two-phase flow patterns. Acta Physica Sinica, 2012, 61(12): 120510. doi: 10.7498/aps.61.120510
    [10] Yang Pu, Zheng Zhi-Gang. Analysis the convergency speed of estimating the network topology based on the dynamical synchronization. Acta Physica Sinica, 2012, 61(12): 120508. doi: 10.7498/aps.61.120508
    [11] Cui Ai-Xiang, Fu Yan, Shang Ming-Sheng, Chen Duan-Bing, Zhou Tao. Emergence of local structures in complex network:common neighborhood drives the network evolution. Acta Physica Sinica, 2011, 60(3): 038901. doi: 10.7498/aps.60.038901
    [12] Fu Bai-Bai, Gao Zi-You, Lin Yong, Wu Jian-Jun, Li Shu-Bin. The analysis of traffic congestion and dynamic propagation properties based on complex network. Acta Physica Sinica, 2011, 60(5): 050701. doi: 10.7498/aps.60.050701
    [13] Chen Wei-Dong, Xu Hua, Guo Qi. Dynamic analysis on the topological properties of the complex network of international oil prices. Acta Physica Sinica, 2010, 59(7): 4514-4523. doi: 10.7498/aps.59.4514
    [14] Lü Ling, Zhang Chao. Chaos synchronization of a complex network with different nodes. Acta Physica Sinica, 2009, 58(3): 1462-1466. doi: 10.7498/aps.58.1462
    [15] Wang Dan, Yu Hao, Jing Yuan-Wei, Jiang Nan, Zhang Si-Ying. Study on the congestion in complex network based on traffic awareness algorithm. Acta Physica Sinica, 2009, 58(10): 6802-6808. doi: 10.7498/aps.58.6802
    [16] Xu Dan, Li Xiang, Wang Xiao-Fan. An investigation on local area control of virus spreading in complex networks. Acta Physica Sinica, 2007, 56(3): 1313-1317. doi: 10.7498/aps.56.1313
    [17] Weng Wen-Guo, Ni Shun-Jiang, Shen Shi-Fei, Yuan Hong-Yong. Dynamics of disaster spreading in complex networks. Acta Physica Sinica, 2007, 56(4): 1938-1943. doi: 10.7498/aps.56.1938
    [18] Li Ji, Wang Bing-Hong, Jiang Pin-Qun, Zhou Tao, Wang Wen-Xu. Growing complex network model with acceleratingly increasing number of nodes. Acta Physica Sinica, 2006, 55(8): 4051-4057. doi: 10.7498/aps.55.4051
    [19] Li Jian-Feng, Zhang Hong-Dong, Qiu Feng, Yang Yu-Liang. A new approach to study the dynamics of the deformation of vesicles discrete-space variational method. Acta Physica Sinica, 2005, 54(9): 4000-4005. doi: 10.7498/aps.54.4000
    [20] Wang Hong-Xia, He Chen. Dynamical behaviour of a cellular neural network. Acta Physica Sinica, 2003, 52(10): 2409-2414. doi: 10.7498/aps.52.2409
Metrics
  • Abstract views:  6314
  • PDF Downloads:  121
  • Cited By: 0
Publishing process
  • Received Date:  22 October 2020
  • Accepted Date:  15 November 2020
  • Available Online:  21 April 2021
  • Published Online:  20 April 2021

/

返回文章
返回
Baidu
map