-
Studies on hydrodynamic characteristics of viscous incompressible flows around flexible hydrofoils are of practical importance for the design and performance optimization of marine structures such as ship rudders and stabilizing fins. The aim of this paper is to extend a radial basis function based ghost cell method to simulate flows around single or multiple flexible moving hydrofoils in array arrangement. The numerical model is based on a ghost cell finite difference method for considering the influence of the immersed boundaries on the flow. Also, a compact supported radial basis function (CSRBF) is introduced to track the complex flexible boundary with some controlling points of the body surface. Based on the present method, the uniform flow around a flexible hydrofoil swimming like a fish is simulated. Good grid convergence of drag and lift coefficients demonstrates the accuracy and reliability of the present method. Also, the hydrodynamics patterns of the flexible hydrofoil under different oscillation frequencies are studied. Further, the thrust generation mechanism of the hydrofoil is explained. Afterwards, flows around the undulating hydrofoils in array arrangement are simulated. The force coefficients and wake patterns under different distances and oscillation frequencies are investigated. It is observed that the thrust coefficients of the hydrofoils under narrow arrangement and high oscillation frequencies have significant amplification effects. In addition, the critical frequency at zero thrust reduces.
-
Keywords:
- Cartesian grid /
- radial basis function /
- flexible hydrofoils /
- array arrangement
[1] Zabihi M, Lari K, Amiri H 2017 J. Mech. Sci. Technol. 31 3539
Google Scholar
[2] Yang J M 2016 J. Hydrodyn. Ser. B 28 713
Google Scholar
[3] 王力, 田方宝 2018 中国科学: 物理学 力学 天文学 48 094703
Google Scholar
Wang L, Tian F B 2018 Sci. China Phys. Mech. Astron. 48 094703
Google Scholar
[4] Al-Marouf M, Samtaney R 2017 J. Comput. Phys. 337 339
Google Scholar
[5] Huang W X, Chang C B, Sung H J 2011 J. Comput. Phys. 230 5061
Google Scholar
[6] Tullio M D D, Pascazio G 2016 J. Comput. Phys. 325 201
Google Scholar
[7] 吴晓笛, 刘华坪, 陈浮 2017 22 224702
Google Scholar
Wu X D, Liu H P, Chen F 2017 Acta Phys. Sin. 22 224702
Google Scholar
[8] Yeo K S, Ang S J, Shu C 2010 Comput. Fluids 39 403
Google Scholar
[9] Tian F B, Wang W, Wu J, Sui Y 2016 Comput. Fluids 124 1
Google Scholar
[10] Bergmann M, Iollo A, Mittal R 2014 Bioinspiration Biomimetics 9 046001
Google Scholar
[11] Khalid M S U, Akhtar I, Dong H 2016 J. Fluids Struct. 66 19
Google Scholar
[12] Khalid M S U, Akhtar I, Imtiaz H, Dong H, Wu B 2018 Ocean Eng. 157 108
Google Scholar
[13] Mittal R, Dong H, Bozkurttas M, Najjar F M, Vargas A, Loebbecke A V 2008 J. Comput. Phys. 227 4825
Google Scholar
[14] 王亮, 吴锤结 2011 力学学报 43 18
Google Scholar
Wang L, Wu C J 2011 Chin. J. Theor. Appl. Mech. 43 18
Google Scholar
[15] 王文全 2014 计算力学学报 31 646
Google Scholar
Wang W Q 2014 Chin. J. Comput. Mech. 31 646
Google Scholar
[16] 辛建建, 石伏龙, 金秋 2017 66 186
Xin J J, Shi F L, Jin Q 2017 Acta Phys. Sin. 66 186
[17] Xin J J, Shi F L, Jin Q, Lin C 2018 Comput. Fluids 176 210
Google Scholar
[18] Leer B V 1979 J. Comput. Phys. 32 101
Google Scholar
[19] Van d V H A, Kohn R V, Iserles A, Ciarlet P G, Wright M H 2006 Iterative Krylov Methods for Large Linear Systems (Cambridge: Cambridge University Press) pp133–135
[20] Liu G R, Gu Y T 2005 An Introduction to Meshfree Methods and Their Programming (Netherlands: Springer) p73
[21] Sui Y, Chew Y T, Roy P, Low H T 2007 Int. J. Numer. Methods Fluids 53 1727
Google Scholar
-
-
[1] Zabihi M, Lari K, Amiri H 2017 J. Mech. Sci. Technol. 31 3539
Google Scholar
[2] Yang J M 2016 J. Hydrodyn. Ser. B 28 713
Google Scholar
[3] 王力, 田方宝 2018 中国科学: 物理学 力学 天文学 48 094703
Google Scholar
Wang L, Tian F B 2018 Sci. China Phys. Mech. Astron. 48 094703
Google Scholar
[4] Al-Marouf M, Samtaney R 2017 J. Comput. Phys. 337 339
Google Scholar
[5] Huang W X, Chang C B, Sung H J 2011 J. Comput. Phys. 230 5061
Google Scholar
[6] Tullio M D D, Pascazio G 2016 J. Comput. Phys. 325 201
Google Scholar
[7] 吴晓笛, 刘华坪, 陈浮 2017 22 224702
Google Scholar
Wu X D, Liu H P, Chen F 2017 Acta Phys. Sin. 22 224702
Google Scholar
[8] Yeo K S, Ang S J, Shu C 2010 Comput. Fluids 39 403
Google Scholar
[9] Tian F B, Wang W, Wu J, Sui Y 2016 Comput. Fluids 124 1
Google Scholar
[10] Bergmann M, Iollo A, Mittal R 2014 Bioinspiration Biomimetics 9 046001
Google Scholar
[11] Khalid M S U, Akhtar I, Dong H 2016 J. Fluids Struct. 66 19
Google Scholar
[12] Khalid M S U, Akhtar I, Imtiaz H, Dong H, Wu B 2018 Ocean Eng. 157 108
Google Scholar
[13] Mittal R, Dong H, Bozkurttas M, Najjar F M, Vargas A, Loebbecke A V 2008 J. Comput. Phys. 227 4825
Google Scholar
[14] 王亮, 吴锤结 2011 力学学报 43 18
Google Scholar
Wang L, Wu C J 2011 Chin. J. Theor. Appl. Mech. 43 18
Google Scholar
[15] 王文全 2014 计算力学学报 31 646
Google Scholar
Wang W Q 2014 Chin. J. Comput. Mech. 31 646
Google Scholar
[16] 辛建建, 石伏龙, 金秋 2017 66 186
Xin J J, Shi F L, Jin Q 2017 Acta Phys. Sin. 66 186
[17] Xin J J, Shi F L, Jin Q, Lin C 2018 Comput. Fluids 176 210
Google Scholar
[18] Leer B V 1979 J. Comput. Phys. 32 101
Google Scholar
[19] Van d V H A, Kohn R V, Iserles A, Ciarlet P G, Wright M H 2006 Iterative Krylov Methods for Large Linear Systems (Cambridge: Cambridge University Press) pp133–135
[20] Liu G R, Gu Y T 2005 An Introduction to Meshfree Methods and Their Programming (Netherlands: Springer) p73
[21] Sui Y, Chew Y T, Roy P, Low H T 2007 Int. J. Numer. Methods Fluids 53 1727
Google Scholar
Catalog
Metrics
- Abstract views: 7162
- PDF Downloads: 64
- Cited By: 0