-
Soliton is an exotic topological excitation, and it widely exists in various nonlinear systems, such as nonlinear optics, Bose-Einstein condensates, classical and quantum fluids, plasma, magnetic materials, etc. A stable soliton can propagate with constant amplitude and velocity, and maintain its shape. Two-dimensional and three-dimensional solitons are usually hard to stabilize, and how to realize stable two-dimensional or three-dimensional solitons has aroused the great interest of the researchers. Ring dark soliton is a kind of two-dimensional soliton, which was first theoretically predicted and experimentally realized in nonlinear optical systems. Compared with the usual two-dimensional solitons, ring dark solitons have good stability and rich dynamical behaviors. Owing to their highly controllable capability, Bose-Einstein condensates provide a new platform for studying the ring dark solitons. Based on the recent progress in Bose-Einstein condensates and solitons, this paper reviews the research on the analytic solutions, stability, as well as the decay dynamics of ring dark solitons in Bose-Einstein condensates. A transform method is introduced, which generalizes the analytic solutions of ring dark solitons from a homogeneous system with time-independent nonlinearity to a harmonically trapped inhomogeneous system with time-dependent nonlinearity. The stability phase diagram of the ring dark soliton under deformation perturbations is discussed by numerically solving the Gross-Pitaevskii equations in the mean-field theory. A method of enhancing the stability of ring dark solitons by periodically modulating the nonlinear coefficients is introduced. It is also shown that the periodically modulated nonlinear coefficient can be experimentally realized by the Feshbach resonance technology. In addition, we discuss the dynamics of the decay of ring dark solitons. It is found that the ring dark soliton can decay into various vortex clusters composed of vortices and antivortices. This opens a new avenue to the investigation of vortex dynamics and quantum turbulence. It is also found that the ring dark solitons combined with periodic modulated nonlinearity can give rise to the pattern formation, which is an interesting nonlinear phenomenon widely explored in all the fields of nature. Finally, some possible research subjects about ring dark solitons in future research are also discussed.
-
Keywords:
- Bose-Einstein condensation /
- ring dark soliton /
- vortex dipole /
- pattern formation
[1] Zabusky N J, Kruskal M D 1965 Phys. Rev. Lett. 15 240
[2] Kartashov Y V, Malomed B A, Torner L 2011 Rev. Mod. Phys. 83 247
Google Scholar
[3] Kivshar Y S, Malomed B A 1989 Rev. Mod. Phys. 61 763
Google Scholar
[4] Fan S T, Zhang Y Y, Yan L L, Guo W G, Zhang S G, Jiang H F 2019 Chin. Phys. B 28 064204
Google Scholar
[5] Zhao L C, Yang Z Y, Yang W L 2019 Chin. Phys. B 28 010501
Google Scholar
[6] Shou Q, Liu D W, Zhang X, Hu W, Guo Q 2014 Chin. Phys. B 23 084204
Google Scholar
[7] Lei Y, Lou S Y 2013 Chin. Phys. Lett. 30 060202
Google Scholar
[8] Li Q Y, Zhao F, He P B, Li Z D 2015 Chin. Phys. B 24 037508
Google Scholar
[9] Qi W, Li H F, Liang Z X 2019 Chin. Phys. Lett. 36 040501
Google Scholar
[10] Lai X J, Cai X O, Zhang J F 2015 Chin. Phys. B 24 070503
Google Scholar
[11] Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198
Google Scholar
[12] Davis K B, Mewes M O, Andrews M R, Druten N J, Durfee D S, Kurn D M, Ketterle W 1995 Phys. Rev. Lett. 75 3969
Google Scholar
[13] Bradley C C, Sackett C A, Tollett J J, Hulet R G 1995 Phys. Rev. Lett. 75 1687
Google Scholar
[14] Bradley C C, Sackett C A, Hulet R G 1997 Phys. Rev. Lett. 78 985
Google Scholar
[15] Dalfovo F, Giorgini S, Pitaevskii L P, Stringari S 1999 Rev. Mod. Phys. 71 463
Google Scholar
[16] Leggett A J 2001 Rev. Mod. Phys. 73 307
Google Scholar
[17] Morsch O, Oberthaler M 2006 Rev. Mod. Phys. 78 179
Google Scholar
[18] Fetter A L 2009 Rev. Mod. Phys. 81 647
Google Scholar
[19] Chin C, Grimm R, Julienne P, Tiesinga E 2010 Rev. Mod. Phys. 82 1225
Google Scholar
[20] Stamper-Kurn D M, Ueda M 2013 Rev. Mod. Phys. 85 1191
Google Scholar
[21] Goldman N, Juzeliūnas G, Öhberg P, Spielman I B 2014 Rep. Prog. Phys. 77 126401
Google Scholar
[22] Balakrishnan R, Satija I I 2011 Pramana J. Phys. 77 929
Google Scholar
[23] Carretero-González R, Frantzeskakis D J, Kevrekidis P G 2008 Nonlinearity 21 R139
Google Scholar
[24] Frantzeskakis D J 2010 J. Phys. A: Math. Theor. 43 213001
Google Scholar
[25] Kevrekidis P G, Frantzeskakis D J, Carretero-González R 2008 Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment (Berlin: Springer Press)
[26] Ruprecht P A, Holland M J, Burnett K, Edwards M 1995 Phys. Rev. A 51 4704
Google Scholar
[27] Denschlag J, Simsarian J E, Feder D L, Clark C W, Collins L A, Cubizolles J, Deng L, Hagley E W, Helmerson K, Reinhardt W P, Rolston S L, Schneider B I, Phillips W D 2000 Science 287 97
Google Scholar
[28] Sanpera A, Shlyapnikov G V, Lewenstein M 1999 Phys. Rev. Lett. 83 5198
Google Scholar
[29] Tiesinga E, Verhaar B J, Stoof H T C 1993 Phys. Rev. A 47 4114
Google Scholar
[30] Inouye S, Andrews M R, Stenger J, Miesner H J, Stamper-Kurn D M, Ketterle W 1998 Nature 392 151
Google Scholar
[31] Strecker K E, Partridge G B, Truscott A G, Hulet R G 2002 Nature 417 150
Google Scholar
[32] Khaykovich L, Schreck F, Ferrari G, Bourdel T, Cubizolles J, Carr L D, Castin Y, Salomon C 2002 Science 296 1290
Google Scholar
[33] Cornish S L, Thompson S T, Wieman C E 2006 Phys. Rev. Lett. 96 170401
Google Scholar
[34] Malomed B A 2016 Eur. Phys. J. Special Topics 225 2507
Google Scholar
[35] Kivshar Y S, Luther-Davies B 1998 Phys. Rep. 298 81
Google Scholar
[36] Reinhardt W P, Clark C W 1997 J. Phys. B: At. Mol. Opt. Phys. 30 L785
Google Scholar
[37] Feder D L, Pindzola M S, Collins L A, Schneider B I, Clark C W 2000 Phys. Rev. A 62 053606
Google Scholar
[38] Brand J, Reinhardt W P 2002 Phys. Rev. A 65 043612
Google Scholar
[39] Huang G, Makarov V A, Velarde M G 2003 Phys. Rev. A 67 023604
Google Scholar
[40] Dutton Z, Budde M, Slowe C, Hau L V 2001 Science 293 663
Google Scholar
[41] Anderson B P, Haljan P C, Regal C A, Feder D L, Collins L A, Clark C W, Cornell E A 2001 Phys. Rev. Lett. 86 2926
Google Scholar
[42] Tikhonenko V, Christou J, Luther-Davies B, Kivshar Y S 1996 Opt. Lett. 21 1129
Google Scholar
[43] Kuznetsov E, Turitsyn S 1998 Zh. Eksp. Teor. Fiz. 94 119
[44] Theocharis G, Frantzeskakis D J, Kevrekidis P G, Malomed B A, Kivshar Y S 2003 Phys. Rev. Lett. 90 120403
Google Scholar
[45] Kivshar Y S, Yang X 1994 Phys. Rev. E 50 R40
Google Scholar
[46] Kivshar Y S, Yang X 1994 Chaos, Solitons Fractals 4 1745
Google Scholar
[47] Baluschev S, Dreischuh A, Velchev I, Dinev S, Marazov O 1995 Appl. Phys. B: Lasers Opt. 61 121
Google Scholar
[48] Baluschev S, Dreischuh A, Velchev I, Dinev S, Marazov O 1995 Phys. Rev. E 52 5517
Google Scholar
[49] Yang S J, Wu Q S, Zhang S N, Feng S, Guo W, Wen Y C, Yu Y 2007 Phys. Rev. A 76 063606
Google Scholar
[50] Yang S J, Wu Q S, Feng S, Wen Y C, Yu Y 2008 Phys. Rev. A 77 035602
Google Scholar
[51] Hu X H, Zhang X F, Zhao D, Luo H G, Liu W M 2009 Phys. Rev. A 79 023619
Google Scholar
[52] Barenghi C F, Donnelly R J, Vinen W F 2001 Quantized Vortex Dynamics and Superfluid Turbulence (Berlin: Springer Press)
[53] Halperin W P, Tsubota M 2009 Progress in Low Temperature Physics: Quantum Turbulence (Amsterdam: Elsevier Press)
[54] Kusumura T, Tsubota M, Takeuchi H 2012 J. Phys. Conf. Ser. 400 012038
Google Scholar
[55] Khamehchi M A, Hossain K, Mossman M E, Zhang Y, Busch T, Forbes M M, Engels P 2017 Phys. Rev. Lett. 118 155301
Google Scholar
[56] Dalibard J, Gerbier F, Juzeliūnas G, Öhberg P 2011 Rev. Mod. Phys. 83 1523
Google Scholar
[57] Han W, Zhang X F, Song S W, Saito H, Zhang W, Liu W M, Zhang S G 2016 Phys. Rev. A 94 033629
Google Scholar
[58] Fedichev P O, Kagan Y, Shlyapnikov G V, Walraven J T M 1996 Phys. Rev. Lett. 77 2913
Google Scholar
[59] Theis M, Thalhammer G, Winkler K, Hellwig M, Ruff G, Grimm R, Denschlag J H 2004 Phys. Rev. Lett. 93 123001
Google Scholar
[60] Olshanii M 1998 Phys. Rev. Lett. 81 938
Google Scholar
[61] Haller E, Gustavsson M, Mark M J, Danzl J G, Hart R, Pupillo G, Nägerl H C 2009 Science 325 1224
Google Scholar
[62] Zhang R, Cheng Y, Zhai H, Zhang P 2015 Phys. Rev. Lett. 115 135301
Google Scholar
[63] Pagano G, Mancini M, Cappellini G, Livi L, Sias C, Catani J, Inguscio M, Fallani L 2015 Phys. Rev. Lett. 115 265301
Google Scholar
[64] Claussen N R, Donley E A, Thompson S T, Wieman C E 2002 Phys. Rev. Lett. 89 010401
Google Scholar
[65] Kevrekidis P G, Theocharis G, Frantzeskakis D J, Malomed B A 2003 Phys. Rev. Lett. 90 230401
Google Scholar
[66] Greiner M, Regal C A, Jin D S 2005 Phys. Rev. Lett. 94 070403
Google Scholar
[67] Yamazaki R, Taie S, Sugawa S, Takahashi Y 2010 Phys. Rev. Lett. 105 050405
Google Scholar
[68] Qi R, Zhai H 2011 Phys. Rev. Lett. 106 163201
Google Scholar
[69] Infeld E, Rowlands G 1990 Nonlinear Waves, Solitons and Chaos (Cambridge: Cambridge University Press)
[70] Hirota R 1979 J. Phys. Soc. Jpn. 46 1681
Google Scholar
[71] Nakamura A 1980 J. Phys. Soc. Jpn. 49 2380
Google Scholar
[72] Nakamura A, Chen H H 1981 J. Phys. Soc. Jpn. 50 711
Google Scholar
[73] Johnson R S 1999 Wave Motion 30 1
Google Scholar
[74] Ko K, Kuehl H 1979 Phys. Fluids 22 1343
Google Scholar
[75] Malomed B A 2006 Soliton Management in Periodic Systems (Berlin: Springer Press)
[76] Pelinovsky D E, Kevrekidis P G, Frantzeskakis D J, Zharnitsky V 2004 Phys. Rev. E 70 047604
Google Scholar
[77] Kevrekidis P G, Pelinovsky D E, Stefanov A 2006 J. Phys. A: Math. Gen. 39 479
Google Scholar
[78] Saito H, Ueda M 2003 Phys. Rev. Lett. 90 040403
Google Scholar
[79] Abdullaev F K, Caputo J G, Kraenkel R A, Malomed B A 2003 Phys. Rev. A 67 013605
Google Scholar
[80] Liang Z X, Zhang Z D, Liu W M 2005 Phys. Rev. Lett. 94 050402
Google Scholar
[81] Cross M C, Hohenberg P C 1993 Rev. Mod. Phys. 65 851
Google Scholar
[82] Abid M, Huepe C, Metens S, Nore C, Pham C T, Tuckerman L S, Brachet M E 2003 Fluid Dyn. Res. 33 509
Google Scholar
[83] Cuypers Y, Maurel A, Petitjeans P 2003 Phys. Rev. Lett. 91 194502
Google Scholar
[84] Yang T, Hu Z Q, Zou S, Liu W M 2016 Sci. Rep. 6 29066
Google Scholar
[85] Busch T, Anglin J R 2001 Phys. Rev. Lett. 87 010401
Google Scholar
[86] Wang L X, Dai C Q, Wen L, Liu T, Jiang H F, Saito H, Zhang S G, Zhang X F 2018 Phys. Rev. A 97 063607
Google Scholar
[87] See Supplemental Material of Ref.[86] at http://link.aps.org/supplemental/10.1103/PhysRevA.97.063607 for movies of the vortex dipole dynamics.
[88] Kawaguchi Y, Ueda M 2012 Phys. Rep. 520 253
Google Scholar
[89] Arecchi F T, Boccaletti S, Ramazza P 1999 Phys. Rep. 318 1
Google Scholar
[90] Seiden G, Thomas P J 2011 Rev. Mod. Phys. 83 1323
Google Scholar
[91] Schwabe M, Konopka U, Bandyopadhyay P, Morfill G E 2011 Phys. Rev. Lett. 106 215004
Google Scholar
[92] Langer J S 1980 Rev. Mod. Phys. 52 1
Google Scholar
[93] Xu Z F, Lü R, You L 2011 Phys. Rev. A 83 053602
Google Scholar
[94] He Z M, Wen L, Wang Y J, Chen G P, Tan R B, Dai C Q, Zhang X F 2019 Phys. Rev. E 99 062216
Google Scholar
[95] Pethick C J, Smith H 2008 Bose-Einstein Condensation in Dilute Gases (Cambridge: Cambridge University Press)
[96] Pitaevskii L, Stringari S 2003 Bose-Einstein Condensation (New York: Oxford University Press)
[97] Thalhammer G, Barontini G, Sarlo L D, Catani J, Minardi F, Inguscio M 2008 Phys. Rev. Lett. 100 210402
Google Scholar
[98] Papp S B, Pino J M, Wieman C E 2008 Phys. Rev. Lett. 101 040402
Google Scholar
[99] Galitski V, Spielman I B 2013 Nature 494 49
Google Scholar
[100] Ferrier-Barbut I, Pfau T 2018 Science 359 274
Google Scholar
[101] Kartashov Y V, Astrakharchik G E, Malomed B A, Torner L 2019 Nat. Rev. Phys. 1 185
Google Scholar
[102] Sakaguchi H, Li B, Malomed B A 2014 Phys. Rev. E 89 032920
Google Scholar
[103] Zhang Y C, Zhou Z W, Malomed B A, Pu H 2015 Phys. Rev. Lett. 115 253902
Google Scholar
[104] Wu C J, Ian M S, Zhou X F 2011 Chin. Phys. Lett. 28 097102
Google Scholar
[105] Wang C, Gao C, Jian C M, Zhai H 2010 Phys. Rev. Lett. 105 160403
Google Scholar
[106] Sinha S, Nath R, Santos L 2011 Phys. Rev. Lett. 107 270401
Google Scholar
[107] Hu H, Ramachandhran B, Pu H, Liu X J 2012 Phys. Rev. Lett. 108 010402
Google Scholar
[108] Xu Z F, Kawaguchi Y, You L, Ueda M 2012 Phys. Rev. A 86 033628
Google Scholar
[109] Xu Z F, Kobayashi S, Ueda M 2013 Phys. Rev. A 88 013621
Google Scholar
-
图 1 形变扰动下环状暗孤子的稳定性相图[51]
Figure 1. Stability phase diagram of ring dark solitons under deformation perturbation.
图 2 单分量BEC中形变扰动下环状暗孤子的衰变行为[51]
Figure 2. Decay of the ring dark soliton under deformation perturbation in a single-component BEC.
图 3 两分量BEC中相同深度环状暗孤子的衰变行为[86]
Figure 3. Decay of the ring dark solitons with the same depth in two-component BECs.
图 4 四组涡旋极子在两分量BEC中的动力学演化[86]
Figure 4. Evolution of four vortex dipoles in two-component BECs.
图 5 两分量BEC中不同深度环状暗孤子的衰变行为[86]
Figure 5. Decay of the ring dark solitons with different depths in two-component BECs.
图 6 周期调制相互作用系统中环状暗孤子衰变引起的斑图形成[94]
Figure 6. Pattern formation induced by the decay of ring dark solitons in a system with periodically modulated interactions.
图 7 斑图在周期调制相互作用系统中的演化[94]
Figure 7. Evolution of the pattern in a system with periodically modulated interactions.
表 1 环状暗孤子寿命随相互作用振荡频率的变化[51]
Table 1. Life of the ring dark soliton as a function of the interaction oscillation frequency.
相互作用振荡频率$\omega$/$\varOmega$ 环状暗孤子寿命t/ms $ < 0.5$ $ < 15$ 0.6 17 0.8 43 1.0 45 1.5 16 $ > 1.7$ $ < 15$ 注1: 原子间相互作用$g(t) = 1-\sin{\omega t}$, 环状暗孤子深度$\cos{\phi(0)} = 0.76$. -
[1] Zabusky N J, Kruskal M D 1965 Phys. Rev. Lett. 15 240
[2] Kartashov Y V, Malomed B A, Torner L 2011 Rev. Mod. Phys. 83 247
Google Scholar
[3] Kivshar Y S, Malomed B A 1989 Rev. Mod. Phys. 61 763
Google Scholar
[4] Fan S T, Zhang Y Y, Yan L L, Guo W G, Zhang S G, Jiang H F 2019 Chin. Phys. B 28 064204
Google Scholar
[5] Zhao L C, Yang Z Y, Yang W L 2019 Chin. Phys. B 28 010501
Google Scholar
[6] Shou Q, Liu D W, Zhang X, Hu W, Guo Q 2014 Chin. Phys. B 23 084204
Google Scholar
[7] Lei Y, Lou S Y 2013 Chin. Phys. Lett. 30 060202
Google Scholar
[8] Li Q Y, Zhao F, He P B, Li Z D 2015 Chin. Phys. B 24 037508
Google Scholar
[9] Qi W, Li H F, Liang Z X 2019 Chin. Phys. Lett. 36 040501
Google Scholar
[10] Lai X J, Cai X O, Zhang J F 2015 Chin. Phys. B 24 070503
Google Scholar
[11] Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198
Google Scholar
[12] Davis K B, Mewes M O, Andrews M R, Druten N J, Durfee D S, Kurn D M, Ketterle W 1995 Phys. Rev. Lett. 75 3969
Google Scholar
[13] Bradley C C, Sackett C A, Tollett J J, Hulet R G 1995 Phys. Rev. Lett. 75 1687
Google Scholar
[14] Bradley C C, Sackett C A, Hulet R G 1997 Phys. Rev. Lett. 78 985
Google Scholar
[15] Dalfovo F, Giorgini S, Pitaevskii L P, Stringari S 1999 Rev. Mod. Phys. 71 463
Google Scholar
[16] Leggett A J 2001 Rev. Mod. Phys. 73 307
Google Scholar
[17] Morsch O, Oberthaler M 2006 Rev. Mod. Phys. 78 179
Google Scholar
[18] Fetter A L 2009 Rev. Mod. Phys. 81 647
Google Scholar
[19] Chin C, Grimm R, Julienne P, Tiesinga E 2010 Rev. Mod. Phys. 82 1225
Google Scholar
[20] Stamper-Kurn D M, Ueda M 2013 Rev. Mod. Phys. 85 1191
Google Scholar
[21] Goldman N, Juzeliūnas G, Öhberg P, Spielman I B 2014 Rep. Prog. Phys. 77 126401
Google Scholar
[22] Balakrishnan R, Satija I I 2011 Pramana J. Phys. 77 929
Google Scholar
[23] Carretero-González R, Frantzeskakis D J, Kevrekidis P G 2008 Nonlinearity 21 R139
Google Scholar
[24] Frantzeskakis D J 2010 J. Phys. A: Math. Theor. 43 213001
Google Scholar
[25] Kevrekidis P G, Frantzeskakis D J, Carretero-González R 2008 Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment (Berlin: Springer Press)
[26] Ruprecht P A, Holland M J, Burnett K, Edwards M 1995 Phys. Rev. A 51 4704
Google Scholar
[27] Denschlag J, Simsarian J E, Feder D L, Clark C W, Collins L A, Cubizolles J, Deng L, Hagley E W, Helmerson K, Reinhardt W P, Rolston S L, Schneider B I, Phillips W D 2000 Science 287 97
Google Scholar
[28] Sanpera A, Shlyapnikov G V, Lewenstein M 1999 Phys. Rev. Lett. 83 5198
Google Scholar
[29] Tiesinga E, Verhaar B J, Stoof H T C 1993 Phys. Rev. A 47 4114
Google Scholar
[30] Inouye S, Andrews M R, Stenger J, Miesner H J, Stamper-Kurn D M, Ketterle W 1998 Nature 392 151
Google Scholar
[31] Strecker K E, Partridge G B, Truscott A G, Hulet R G 2002 Nature 417 150
Google Scholar
[32] Khaykovich L, Schreck F, Ferrari G, Bourdel T, Cubizolles J, Carr L D, Castin Y, Salomon C 2002 Science 296 1290
Google Scholar
[33] Cornish S L, Thompson S T, Wieman C E 2006 Phys. Rev. Lett. 96 170401
Google Scholar
[34] Malomed B A 2016 Eur. Phys. J. Special Topics 225 2507
Google Scholar
[35] Kivshar Y S, Luther-Davies B 1998 Phys. Rep. 298 81
Google Scholar
[36] Reinhardt W P, Clark C W 1997 J. Phys. B: At. Mol. Opt. Phys. 30 L785
Google Scholar
[37] Feder D L, Pindzola M S, Collins L A, Schneider B I, Clark C W 2000 Phys. Rev. A 62 053606
Google Scholar
[38] Brand J, Reinhardt W P 2002 Phys. Rev. A 65 043612
Google Scholar
[39] Huang G, Makarov V A, Velarde M G 2003 Phys. Rev. A 67 023604
Google Scholar
[40] Dutton Z, Budde M, Slowe C, Hau L V 2001 Science 293 663
Google Scholar
[41] Anderson B P, Haljan P C, Regal C A, Feder D L, Collins L A, Clark C W, Cornell E A 2001 Phys. Rev. Lett. 86 2926
Google Scholar
[42] Tikhonenko V, Christou J, Luther-Davies B, Kivshar Y S 1996 Opt. Lett. 21 1129
Google Scholar
[43] Kuznetsov E, Turitsyn S 1998 Zh. Eksp. Teor. Fiz. 94 119
[44] Theocharis G, Frantzeskakis D J, Kevrekidis P G, Malomed B A, Kivshar Y S 2003 Phys. Rev. Lett. 90 120403
Google Scholar
[45] Kivshar Y S, Yang X 1994 Phys. Rev. E 50 R40
Google Scholar
[46] Kivshar Y S, Yang X 1994 Chaos, Solitons Fractals 4 1745
Google Scholar
[47] Baluschev S, Dreischuh A, Velchev I, Dinev S, Marazov O 1995 Appl. Phys. B: Lasers Opt. 61 121
Google Scholar
[48] Baluschev S, Dreischuh A, Velchev I, Dinev S, Marazov O 1995 Phys. Rev. E 52 5517
Google Scholar
[49] Yang S J, Wu Q S, Zhang S N, Feng S, Guo W, Wen Y C, Yu Y 2007 Phys. Rev. A 76 063606
Google Scholar
[50] Yang S J, Wu Q S, Feng S, Wen Y C, Yu Y 2008 Phys. Rev. A 77 035602
Google Scholar
[51] Hu X H, Zhang X F, Zhao D, Luo H G, Liu W M 2009 Phys. Rev. A 79 023619
Google Scholar
[52] Barenghi C F, Donnelly R J, Vinen W F 2001 Quantized Vortex Dynamics and Superfluid Turbulence (Berlin: Springer Press)
[53] Halperin W P, Tsubota M 2009 Progress in Low Temperature Physics: Quantum Turbulence (Amsterdam: Elsevier Press)
[54] Kusumura T, Tsubota M, Takeuchi H 2012 J. Phys. Conf. Ser. 400 012038
Google Scholar
[55] Khamehchi M A, Hossain K, Mossman M E, Zhang Y, Busch T, Forbes M M, Engels P 2017 Phys. Rev. Lett. 118 155301
Google Scholar
[56] Dalibard J, Gerbier F, Juzeliūnas G, Öhberg P 2011 Rev. Mod. Phys. 83 1523
Google Scholar
[57] Han W, Zhang X F, Song S W, Saito H, Zhang W, Liu W M, Zhang S G 2016 Phys. Rev. A 94 033629
Google Scholar
[58] Fedichev P O, Kagan Y, Shlyapnikov G V, Walraven J T M 1996 Phys. Rev. Lett. 77 2913
Google Scholar
[59] Theis M, Thalhammer G, Winkler K, Hellwig M, Ruff G, Grimm R, Denschlag J H 2004 Phys. Rev. Lett. 93 123001
Google Scholar
[60] Olshanii M 1998 Phys. Rev. Lett. 81 938
Google Scholar
[61] Haller E, Gustavsson M, Mark M J, Danzl J G, Hart R, Pupillo G, Nägerl H C 2009 Science 325 1224
Google Scholar
[62] Zhang R, Cheng Y, Zhai H, Zhang P 2015 Phys. Rev. Lett. 115 135301
Google Scholar
[63] Pagano G, Mancini M, Cappellini G, Livi L, Sias C, Catani J, Inguscio M, Fallani L 2015 Phys. Rev. Lett. 115 265301
Google Scholar
[64] Claussen N R, Donley E A, Thompson S T, Wieman C E 2002 Phys. Rev. Lett. 89 010401
Google Scholar
[65] Kevrekidis P G, Theocharis G, Frantzeskakis D J, Malomed B A 2003 Phys. Rev. Lett. 90 230401
Google Scholar
[66] Greiner M, Regal C A, Jin D S 2005 Phys. Rev. Lett. 94 070403
Google Scholar
[67] Yamazaki R, Taie S, Sugawa S, Takahashi Y 2010 Phys. Rev. Lett. 105 050405
Google Scholar
[68] Qi R, Zhai H 2011 Phys. Rev. Lett. 106 163201
Google Scholar
[69] Infeld E, Rowlands G 1990 Nonlinear Waves, Solitons and Chaos (Cambridge: Cambridge University Press)
[70] Hirota R 1979 J. Phys. Soc. Jpn. 46 1681
Google Scholar
[71] Nakamura A 1980 J. Phys. Soc. Jpn. 49 2380
Google Scholar
[72] Nakamura A, Chen H H 1981 J. Phys. Soc. Jpn. 50 711
Google Scholar
[73] Johnson R S 1999 Wave Motion 30 1
Google Scholar
[74] Ko K, Kuehl H 1979 Phys. Fluids 22 1343
Google Scholar
[75] Malomed B A 2006 Soliton Management in Periodic Systems (Berlin: Springer Press)
[76] Pelinovsky D E, Kevrekidis P G, Frantzeskakis D J, Zharnitsky V 2004 Phys. Rev. E 70 047604
Google Scholar
[77] Kevrekidis P G, Pelinovsky D E, Stefanov A 2006 J. Phys. A: Math. Gen. 39 479
Google Scholar
[78] Saito H, Ueda M 2003 Phys. Rev. Lett. 90 040403
Google Scholar
[79] Abdullaev F K, Caputo J G, Kraenkel R A, Malomed B A 2003 Phys. Rev. A 67 013605
Google Scholar
[80] Liang Z X, Zhang Z D, Liu W M 2005 Phys. Rev. Lett. 94 050402
Google Scholar
[81] Cross M C, Hohenberg P C 1993 Rev. Mod. Phys. 65 851
Google Scholar
[82] Abid M, Huepe C, Metens S, Nore C, Pham C T, Tuckerman L S, Brachet M E 2003 Fluid Dyn. Res. 33 509
Google Scholar
[83] Cuypers Y, Maurel A, Petitjeans P 2003 Phys. Rev. Lett. 91 194502
Google Scholar
[84] Yang T, Hu Z Q, Zou S, Liu W M 2016 Sci. Rep. 6 29066
Google Scholar
[85] Busch T, Anglin J R 2001 Phys. Rev. Lett. 87 010401
Google Scholar
[86] Wang L X, Dai C Q, Wen L, Liu T, Jiang H F, Saito H, Zhang S G, Zhang X F 2018 Phys. Rev. A 97 063607
Google Scholar
[87] See Supplemental Material of Ref.[86] at http://link.aps.org/supplemental/10.1103/PhysRevA.97.063607 for movies of the vortex dipole dynamics.
[88] Kawaguchi Y, Ueda M 2012 Phys. Rep. 520 253
Google Scholar
[89] Arecchi F T, Boccaletti S, Ramazza P 1999 Phys. Rep. 318 1
Google Scholar
[90] Seiden G, Thomas P J 2011 Rev. Mod. Phys. 83 1323
Google Scholar
[91] Schwabe M, Konopka U, Bandyopadhyay P, Morfill G E 2011 Phys. Rev. Lett. 106 215004
Google Scholar
[92] Langer J S 1980 Rev. Mod. Phys. 52 1
Google Scholar
[93] Xu Z F, Lü R, You L 2011 Phys. Rev. A 83 053602
Google Scholar
[94] He Z M, Wen L, Wang Y J, Chen G P, Tan R B, Dai C Q, Zhang X F 2019 Phys. Rev. E 99 062216
Google Scholar
[95] Pethick C J, Smith H 2008 Bose-Einstein Condensation in Dilute Gases (Cambridge: Cambridge University Press)
[96] Pitaevskii L, Stringari S 2003 Bose-Einstein Condensation (New York: Oxford University Press)
[97] Thalhammer G, Barontini G, Sarlo L D, Catani J, Minardi F, Inguscio M 2008 Phys. Rev. Lett. 100 210402
Google Scholar
[98] Papp S B, Pino J M, Wieman C E 2008 Phys. Rev. Lett. 101 040402
Google Scholar
[99] Galitski V, Spielman I B 2013 Nature 494 49
Google Scholar
[100] Ferrier-Barbut I, Pfau T 2018 Science 359 274
Google Scholar
[101] Kartashov Y V, Astrakharchik G E, Malomed B A, Torner L 2019 Nat. Rev. Phys. 1 185
Google Scholar
[102] Sakaguchi H, Li B, Malomed B A 2014 Phys. Rev. E 89 032920
Google Scholar
[103] Zhang Y C, Zhou Z W, Malomed B A, Pu H 2015 Phys. Rev. Lett. 115 253902
Google Scholar
[104] Wu C J, Ian M S, Zhou X F 2011 Chin. Phys. Lett. 28 097102
Google Scholar
[105] Wang C, Gao C, Jian C M, Zhai H 2010 Phys. Rev. Lett. 105 160403
Google Scholar
[106] Sinha S, Nath R, Santos L 2011 Phys. Rev. Lett. 107 270401
Google Scholar
[107] Hu H, Ramachandhran B, Pu H, Liu X J 2012 Phys. Rev. Lett. 108 010402
Google Scholar
[108] Xu Z F, Kawaguchi Y, You L, Ueda M 2012 Phys. Rev. A 86 033628
Google Scholar
[109] Xu Z F, Kobayashi S, Ueda M 2013 Phys. Rev. A 88 013621
Google Scholar
Catalog
Metrics
- Abstract views: 12137
- PDF Downloads: 301
- Cited By: 0