Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Gap solitons and their stabilities in a quasi one-dimensional Bose-Einstein condensate under three-body interaction

Tang Na Yang Xue-Ying Song Lin Zhang Juan Li Xiao-Lin Zhou Zhi-Kun Shi Yu-Ren

Citation:

Gap solitons and their stabilities in a quasi one-dimensional Bose-Einstein condensate under three-body interaction

Tang Na, Yang Xue-Ying, Song Lin, Zhang Juan, Li Xiao-Lin, Zhou Zhi-Kun, Shi Yu-Ren
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
Get Citation
  • We study the gap solitons and their stability properties in a Bose-Einstein condensation (BEC) under three-body interaction loaded in a Jacobian elliptic sine potential, which can be described by a cubic-quintic Gross-Pitaevskii equation (GPE) in the mean-field approximation. Firstly, the GPE is transformed into a stationary cubic-quintic nonlinear Schrödinger equation (NLSE) by the multi-scale method. A class of analytical solution of the NLSE is presented to describe the gap solitons. It is shown analytically that the amplitude of the gap soliton decreases as the two-body or three-body interaction strength increases. Secondly, many kinds of gap solitons, including the fundamental soliton and the sub-fundamental soliton, are obtained numerically by the Newton-Conjugate-Gradient (NCG) method. There are two families of fundamental solitons: one is the on-site soliton and the other is the off-site soliton. All of them are bifurcated from the Bloch band. Both in-phase and out-phase dipole solitons for off-site solitons do exist in such a nonlinear system. The numerical results also indicate that the amplitude of the gap soliton decreases as the nonlinear interaction strength increases, which accords well with the analytical prediction. Finally, long-time dynamical evolution for the GPE is performed by the time-splitting Fourier spectrum method to investigate the dynamical stability of gap solitons. It is shown that the on-site solitons are always dynamically stable, while the off-site solitons are always unstable. However, both stable and unstable in-phase or out-phase dipole solitons, which are not bifurcated from the Bloch band, indeed exist. For a type of out-phase soliton, there is a critical value $ q_c$ when the chemical potential μ is fixed. The solitons are linearly stable as $ q>q_c$, while they are linearly unstable for $ q<q_c$. Therefore, the modulus q plays an important role in the stability of gap solitons. One can change the dynamical behavior of gap solitons by adjusting the modulus of external potential in experiment. We also find that there exists a kind of gap soliton, in which the soliton is dynamically unstable if only the two-body interaction is considered, but it becomes stable when the three-body interaction is taken into account. This indicates that the three-body interaction has influence on the stability of gap solitons.
      Corresponding author: Shi Yu-Ren, shiyr@nwnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11565021) and the Scientific Research Foundation of NWNU (Grant Nos. NWNU-LKQN-16-3, NWNU2019KT232)
    [1]

    Bose S N 1924 Z. Phy. 26 178

    [2]

    Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198Google Scholar

    [3]

    Tsurumi T 2000 Int. J. Mod. Phys. B 14 655Google Scholar

    [4]

    Malomed B A 2006 Soltion Management in Periodic Systems (Vol. 1) (Berlin: Springer) pp 1—6

    [5]

    Wang D S, Hu X H, Hu J, Liu W M 2010 Phys. Rev. A 81 025604Google Scholar

    [6]

    Burger S, Bongs K, Dettmer S, Ertmer W, Sengstock K, Sanpera A, Shlyapnikov G V, Lewenstein M 1999 Phys. Rev. Lett. 83 5198Google Scholar

    [7]

    Khaykovich L, Schreck F, Ferrari G, Bourdel T, Cubizolles J, Carr L D, Castin Y, Salomon C 2002 Science 296 1290Google Scholar

    [8]

    Ku M J H, Ji W, Mukherjee B, Guardado S E, Cheuk L W, Yefash T, Zwierlein M W 2014 Phys. Rev. Lett. 113 065301Google Scholar

    [9]

    Yu H Y, Yan J R, Xie Q T 2004 Chin. Phys. Lett. 21 1881Google Scholar

    [10]

    Wang Z X, Zhang X H, Shen K 2008 Chin. Phys. B 17 3270Google Scholar

    [11]

    Li J H, Kuang L M 2003 Commun. Theor. Phys. 39 44Google Scholar

    [12]

    EtienneW B, Alidou M D, Timoléon C K 2008 Phys. Rev. E 77 046216Google Scholar

    [13]

    Zhang W, Wright E M, Pu H, Meystre P 2003 Phys. Rev. A 68 023605Google Scholar

    [14]

    Abdullaev F Kh, Gammal A, Tomio L, Frederico T 2001 Phys. Rev. A 63 043604Google Scholar

    [15]

    Chang N N, Yu Z F, Zhang A X, Xue J K 2017 Chin. Phys. B 26 115202Google Scholar

    [16]

    Etienne W, Porsezian K, Alidou M, Timoléon C K 2013 Phys. Lett. A 377 262Google Scholar

    [17]

    Chin C, Kraemer T, Mark M, Herbig J, Waldburger P, Nagerl H C, Grimm R 2005 Phys. Rev. Lett. 94 123201Google Scholar

    [18]

    Peng P, Li G Q 2009 Chin. Phys. B 18 3221Google Scholar

    [19]

    阮航宇, 陈一新 2001 4 0586

    Ruan H Y, Chen Y X 2001 Acta. Phys. Sin. 4 0586

    [20]

    Saito H, Ueda M 2001 Phys. Rev. Lett. 86 1406Google Scholar

    [21]

    Fiho V S, Gammal A, Frederico T, Tomio L 2000 Phys. Rev. A 62 033605Google Scholar

    [22]

    Meng D X, Li K Z 2019 Phys. Rev. Lett. 33 19150123

    [23]

    Wahlquist H D, Estabreok F B 1973 Phys. Rev. Lett. 31 1386Google Scholar

    [24]

    Radhakrishnan R, Sahadcvan R, Lakshmanan M 1995 Chaos, Solitons Fractals 5 2315Google Scholar

    [25]

    Weiss J, Tabor M, Carneval G 1983 J. Math. Phys. 24 6

    [26]

    Wang D S, Liu J 2018 Appl. Math. Lett. 79 211Google Scholar

    [27]

    文林, 梁毅, 周晶, 余鹏, 夏雷, 牛连斌, 张晓斐 2019 68 080301Google Scholar

    Wen L, Liang Y, Zhou J, Yu P, Xia L, Niu L B, Zhang X F 2019 Acta Phys. Sin. 68 080301Google Scholar

    [28]

    Dmitry E P, Andrey A S, Yuri S K 2004 Phys. Rev. E 70 036618Google Scholar

    [29]

    Tang N, Yang X Y, Feng W X, Song L, Li X L, Xi Z H, Wang D S, Shi Y R 2019 Physica A 528 1

    [30]

    Akozbek N, John S 1998 Phys. Rev. E 57 2287Google Scholar

    [31]

    Mingaleev S F, Kivshar Yu S 2001 Phys. Rev. Lett. 86 5474Google Scholar

    [32]

    Louis P J Y, Ostrovskaya E A, Kivshar Yu S 2005 Phys. Rev. A 71 023612Google Scholar

    [33]

    Eiermann B, Anker Th, Albiez M, Taglieber M, Treutlein M, Marzlin K P, Oberthaler M K 2004 Phys. Rev. Lett. 92 230401Google Scholar

    [34]

    Zhu J, Bian C L, Wang H C 2019 Chin. Phys. B 28 093701Google Scholar

    [35]

    Li Y, Hai W H 2005 Commun. Theor. Phys. 44 840Google Scholar

    [36]

    Eddy T, Paolo T, Mahir H, Arthur K 1999 Phys. Rep. 315 199Google Scholar

    [37]

    Bao W 2007 Dynamics In Models Of Coarsening, Coagulation, Condensation And Quantization. (Vol. 1) (Singpore: World Scientific) p147—149

    [38]

    Yang J K 2010 Nonlinear Waves in Integrable and Nonintegrable Systems (Vol. 1) (Philadelphia: SIAM) p269−283

    [39]

    Kostov N A, Enolśkii V Z, Gerdjikov V S, Konotop V V and Salerno M 2004 Phys. Rev. E 70 056617Google Scholar

    [40]

    Catarina C, Vitor Nistor, Yu Q 2017 Operator Theory: Advances and Applications (Vol. 1) (Berlin: Springer) p20−24

    [41]

    Yang J K 2009 J. Comput. Phys. 228 7007Google Scholar

    [42]

    唐恒永 1985 北京工业大学学报 11 69

    Tang H Y 1985 J. BJUT. Tech. 11 69

    [43]

    Royer C W, Neill M O’, Wright S J 2018 Math. Program. 1-38

    [44]

    Zhang Q, Li S, Lei Y, Zhang X D 2012 J. Control Theory Appl. 10 223Google Scholar

    [45]

    Allen A J, Zuccher S, Caliari M, Proukakis N, Parker N G, Barenghi C F 2014 Phys. Rev. A 90 013601Google Scholar

    [46]

    Adhikari S F, Malomed B A 2007 Europhys. Lett. 79 50003Google Scholar

  • 图 1  3−5次GPE的单峰带隙孤子($V_0=4$) (a), (b) $q=0.1$; (c), (d) $q=0.99$. 阴影部分表示外势$V(x)$低处

    Figure 1.  Profiles of singl-hump gap solitons of the cubic-quintic GPE ($V_0=4$): (a), (b) $q$ = 0.1; (c), (d) $q$ = 0.99. Shaded regions represent lattice sites, i.e., regions of low potential values $V(x)$.

    图 2  单峰带隙孤子的振幅随相互作用强度的变化($V_0=4$)

    Figure 2.  Amplitudes of single-hump gap solitons v.s. nonlinear interaction strength.

    图 3  on-site孤子三体相互作用能量和两体相互作用能量的比

    Figure 3.  The ratio of three-body energy to two-body energy for on-site solitons with different interaction strength.

    图 4  3−5次GPE的同相偶极孤子和异相偶极孤子($V_0=4$) (a), (b) $q=0.1; $ (c), (d) $q=0.99$. 阴影部分表示外势$V(x)$低处

    Figure 4.  Profiles of double-hump gap solitons of the cubic-quintic GPE ($V_0=4$) (a), (b) $q$ = 0.1; (c), (d) $q$ = 0.99. Shaded regions represent lattice sites, i.e., regions of low potential values $V(x)$.

    图 5  不同类型带隙孤子的动力学演化 (a) on-site孤子; (b) 同相偶极孤子; (c), (d) 异相偶极孤子

    Figure 5.  Contour plots of $|{\varPsi(x, t)}|$ for perturbed gap solitons: (a) On-site soliton; (b) in-phase dipole soliton; (c), (d) out-phase dipole soliton.

    图 6  (a), (c) 第一带隙中的亚基本带隙孤子(红色). 蓝线表示外势; (b), (d) 亚基本带隙孤子的动力学演化

    Figure 6.  (a), (c) Profiles of sub-fundamental gap solitons (red lines) lie in the first bandgap. The solid blue lines denote the external potential; (b), (d) contour plots of $|{\varPsi(x, t)}|$ for perturbed gap solitons.

    图 7  第一带隙中同相偶极孤子 (a) $\eta=0$和(b) $\eta=-0.2$时的动力学演化

    Figure 7.  Contour plots of $|{\varPsi(x, t)}|$ for in-phase dipole solitons lie in the first bandgap with (a) $\eta=0$ and (b) $\eta=-0.2$.

    Baidu
  • [1]

    Bose S N 1924 Z. Phy. 26 178

    [2]

    Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198Google Scholar

    [3]

    Tsurumi T 2000 Int. J. Mod. Phys. B 14 655Google Scholar

    [4]

    Malomed B A 2006 Soltion Management in Periodic Systems (Vol. 1) (Berlin: Springer) pp 1—6

    [5]

    Wang D S, Hu X H, Hu J, Liu W M 2010 Phys. Rev. A 81 025604Google Scholar

    [6]

    Burger S, Bongs K, Dettmer S, Ertmer W, Sengstock K, Sanpera A, Shlyapnikov G V, Lewenstein M 1999 Phys. Rev. Lett. 83 5198Google Scholar

    [7]

    Khaykovich L, Schreck F, Ferrari G, Bourdel T, Cubizolles J, Carr L D, Castin Y, Salomon C 2002 Science 296 1290Google Scholar

    [8]

    Ku M J H, Ji W, Mukherjee B, Guardado S E, Cheuk L W, Yefash T, Zwierlein M W 2014 Phys. Rev. Lett. 113 065301Google Scholar

    [9]

    Yu H Y, Yan J R, Xie Q T 2004 Chin. Phys. Lett. 21 1881Google Scholar

    [10]

    Wang Z X, Zhang X H, Shen K 2008 Chin. Phys. B 17 3270Google Scholar

    [11]

    Li J H, Kuang L M 2003 Commun. Theor. Phys. 39 44Google Scholar

    [12]

    EtienneW B, Alidou M D, Timoléon C K 2008 Phys. Rev. E 77 046216Google Scholar

    [13]

    Zhang W, Wright E M, Pu H, Meystre P 2003 Phys. Rev. A 68 023605Google Scholar

    [14]

    Abdullaev F Kh, Gammal A, Tomio L, Frederico T 2001 Phys. Rev. A 63 043604Google Scholar

    [15]

    Chang N N, Yu Z F, Zhang A X, Xue J K 2017 Chin. Phys. B 26 115202Google Scholar

    [16]

    Etienne W, Porsezian K, Alidou M, Timoléon C K 2013 Phys. Lett. A 377 262Google Scholar

    [17]

    Chin C, Kraemer T, Mark M, Herbig J, Waldburger P, Nagerl H C, Grimm R 2005 Phys. Rev. Lett. 94 123201Google Scholar

    [18]

    Peng P, Li G Q 2009 Chin. Phys. B 18 3221Google Scholar

    [19]

    阮航宇, 陈一新 2001 4 0586

    Ruan H Y, Chen Y X 2001 Acta. Phys. Sin. 4 0586

    [20]

    Saito H, Ueda M 2001 Phys. Rev. Lett. 86 1406Google Scholar

    [21]

    Fiho V S, Gammal A, Frederico T, Tomio L 2000 Phys. Rev. A 62 033605Google Scholar

    [22]

    Meng D X, Li K Z 2019 Phys. Rev. Lett. 33 19150123

    [23]

    Wahlquist H D, Estabreok F B 1973 Phys. Rev. Lett. 31 1386Google Scholar

    [24]

    Radhakrishnan R, Sahadcvan R, Lakshmanan M 1995 Chaos, Solitons Fractals 5 2315Google Scholar

    [25]

    Weiss J, Tabor M, Carneval G 1983 J. Math. Phys. 24 6

    [26]

    Wang D S, Liu J 2018 Appl. Math. Lett. 79 211Google Scholar

    [27]

    文林, 梁毅, 周晶, 余鹏, 夏雷, 牛连斌, 张晓斐 2019 68 080301Google Scholar

    Wen L, Liang Y, Zhou J, Yu P, Xia L, Niu L B, Zhang X F 2019 Acta Phys. Sin. 68 080301Google Scholar

    [28]

    Dmitry E P, Andrey A S, Yuri S K 2004 Phys. Rev. E 70 036618Google Scholar

    [29]

    Tang N, Yang X Y, Feng W X, Song L, Li X L, Xi Z H, Wang D S, Shi Y R 2019 Physica A 528 1

    [30]

    Akozbek N, John S 1998 Phys. Rev. E 57 2287Google Scholar

    [31]

    Mingaleev S F, Kivshar Yu S 2001 Phys. Rev. Lett. 86 5474Google Scholar

    [32]

    Louis P J Y, Ostrovskaya E A, Kivshar Yu S 2005 Phys. Rev. A 71 023612Google Scholar

    [33]

    Eiermann B, Anker Th, Albiez M, Taglieber M, Treutlein M, Marzlin K P, Oberthaler M K 2004 Phys. Rev. Lett. 92 230401Google Scholar

    [34]

    Zhu J, Bian C L, Wang H C 2019 Chin. Phys. B 28 093701Google Scholar

    [35]

    Li Y, Hai W H 2005 Commun. Theor. Phys. 44 840Google Scholar

    [36]

    Eddy T, Paolo T, Mahir H, Arthur K 1999 Phys. Rep. 315 199Google Scholar

    [37]

    Bao W 2007 Dynamics In Models Of Coarsening, Coagulation, Condensation And Quantization. (Vol. 1) (Singpore: World Scientific) p147—149

    [38]

    Yang J K 2010 Nonlinear Waves in Integrable and Nonintegrable Systems (Vol. 1) (Philadelphia: SIAM) p269−283

    [39]

    Kostov N A, Enolśkii V Z, Gerdjikov V S, Konotop V V and Salerno M 2004 Phys. Rev. E 70 056617Google Scholar

    [40]

    Catarina C, Vitor Nistor, Yu Q 2017 Operator Theory: Advances and Applications (Vol. 1) (Berlin: Springer) p20−24

    [41]

    Yang J K 2009 J. Comput. Phys. 228 7007Google Scholar

    [42]

    唐恒永 1985 北京工业大学学报 11 69

    Tang H Y 1985 J. BJUT. Tech. 11 69

    [43]

    Royer C W, Neill M O’, Wright S J 2018 Math. Program. 1-38

    [44]

    Zhang Q, Li S, Lei Y, Zhang X D 2012 J. Control Theory Appl. 10 223Google Scholar

    [45]

    Allen A J, Zuccher S, Caliari M, Proukakis N, Parker N G, Barenghi C F 2014 Phys. Rev. A 90 013601Google Scholar

    [46]

    Adhikari S F, Malomed B A 2007 Europhys. Lett. 79 50003Google Scholar

Metrics
  • Abstract views:  10505
  • PDF Downloads:  216
  • Cited By: 0
Publishing process
  • Received Date:  23 August 2019
  • Accepted Date:  12 October 2019
  • Available Online:  05 December 2019
  • Published Online:  05 January 2020

/

返回文章
返回
Baidu
map