-
The erbium-doped fiber oscillators, especially mode-locked fiber oscillators for generating femtosecond pulses, cannot meet the requirements for most of modern industrial applications because they are resticted by the low power and the limited wavelength range. In order to solve this problem, lots of efforts have been made both theoretically and experimentally, to improve the chirped pulse amplification (CPA) technology. The emergence of CPA technology greatly enhances the energy of laser pulses. The broadening and compressing of the laser pulses are both always dependent on the improving of spatial optical components, such as grating pairs. However, the use of this kind of method can increase the complexity of the amplification system to a certain extent. This may be an essential reason why more and more researchers pay attention to all fiber amplification system. In this paper, the master oscillator pulse nonlinear amplifier system based on all polarization- maintaining fiber is proposed, which is mainly composed of an oscillator based on the semiconductor saturable absorption mirror and linear cavity, a two-stage amplification and a pulse compressor constructed by a single-mode conductive fiber with anomalous dispersion. Using this system, we obtain ultrashort laser pulses in the 1.5 nm band whose pulse width equals 44 fs and single pulse energy reaches about 1 nJ. The system is not only compact and miniaturized but also stable and reliable due to the all polarization-maintaining fiber. Subsequently, an MgO doped periodically poled lithium niobite crystal with a thickness of 1 mm is used to implement frequency doubling. The pulses from the system are accurately focused on a position where the crystal polarization period is 19.8 μm with help of some wave plates and lenses. Adjusting the optical path reasonably and optimizing colliminated focusing parameters, the double-frequency pulse output with certral wavelength of 779 nm and average power of 60 W is obtained, in which the conversion efficiency reaches 30%. The result shows that the master oscillator pulse nonlinear amplifier system based on all polarization maintaining fiber can produce satisfactory ultrashort pulses. It is a new idea for generating the ultrashort femtosecond pulses in the near-infrared band.
-
Keywords:
- master oscillator pulse nonlinear amplifier /
- nonlinear amplification technique /
- all-fiber laser amplifier /
- frequency doubling
[1] 付思 2013 硕士学位论文 (北京: 北京交通大学)
Fu S 2013 M. S. Thesis (Beijing: Beijing Jiaotong University) (in Chinese)
[2] Jazayerifar M, Warm S, Elschner R, Kroushkov D, Sackey I, Meuer C, Schubert C, Petermann K 2013 J. Lightwave Technol. 31 1454Google Scholar
[3] Sinclair L C, Deschênes J D, Sonderhouse L, Swann W C, Khader I H, Baumann E, Newbury N R, Coddington I 2015 Rev. Sci. Instrum 86 081301Google Scholar
[4] Meng F, Cao S Y, Zhao G Z, Zhao Y, Fang Z J 2015 Chin. J. Las. 42 0702012
[5] 景磊, 姚建铨, 陆颖, 黄晓慧 2012 天津大学学报 45 95
Jing L, Yao J Q, Lu Y, Huang X H 2012 J. Tianjin Univ. 45 95
[6] Li M, Liu K, Jing W C, Peng G D 2010 J. Opt. Soc. Korea 14 14Google Scholar
[7] 王强, 许可, 姚晨雨, 王震, 常军, 任伟 2018 中国激光 45 106
Wang Q, Xu K, Yao C Y, Wang Z, Chang J, Ren W 2018 Chin. J. Las. 45 106
[8] 李彦, 黎珂钦, 金靖 2017 中国激光 44 253
Li Y, Li K Q, Jin J 2017 Chin. J. Las. 44 253
[9] Kang J Q, Kong C H, Feng P P, Li C, Luo Z C, Edmund Y L, Kevin K T, Kenneth K Y W 2018 Conference on Lasers and Electro-Optics San Jose, California, United State, May 13−18, 2018 pSW4J.5
[10] Huang L, Zhou X, Tang S 2018 J. Biomed. Opt. 23 1
[11] 刘观辉, 裴丽, 宁提纲, 高篙, 李晶, 张义军 2012 61 094205Google Scholar
Liu G H, Pei L, Ning T G, Gao S, Li J, Zhang Y J 2012 Acta Phys. Sin. 61 094205Google Scholar
[12] 刘欢, 巩马理, 曹士英, 林百科, 方占军 2015 64 114210Google Scholar
Liu H, Gong M L, Cao S Y, Lin B K, Fang Z J 2015 Acta Phys. Sin. 64 114210Google Scholar
[13] Eidam T, Hanf S, Seise E, Andersen T V, Gabler T, Wirth C, Schreiber T, Limpert J, Tünnermann A 2010 Opt. Lett. 35 94Google Scholar
[14] Eidam T, Rothhardt J, Stutzki F, Jansen F, Hädrich S, Carstens H, Jauregui C, Limpert J, Tünnermann A 2011 Opt. Express 19 255Google Scholar
[15] Sobon G, Kaczmarek P R, Sliwinska D, Sotor J, Abramski K M 2014 IEEE J. Sel. Top. Quantum Electron. 20 492Google Scholar
[16] 李浪, 刘洋, 王超, 潘海峰 2016 激光技术 40 307Google Scholar
Li L, Liu Y, Wang C, Pan H F 2016 Laser Technol. 40 307Google Scholar
[17] Ou S M, Liu G Y, Lei H, Zhang Z G, Zhang Q M 2017 Chin. Phys. Lett. 34 074207Google Scholar
[18] Sun J, Zhou Y, Dai Y T, Li J Q, Yin F F, Dai J, Xu K 2018 Appl. Opt. 57 1492Google Scholar
[19] 延凤平, 毛向桥, 王琳, 傅永军, 魏淮, 郑凯, 龚桃荣, 刘鹏, 陶沛琳, 简水生 2009 58 6296Google Scholar
Yan F P, Mao X Q, Wang L, Fu Y J, Wei H, Zheng K, Gong T R, Liu P, Tao P L, Jian S S 2009 Acta Phys. Sin. 58 6296Google Scholar
[20] Lü Z G, Yang Z, Li F, Yang X J, Tang X J, Yang Y, Li Q L, Wang Y S, Zhao W 2018 Laser Phys. 28 125103Google Scholar
[21] Fermann M, Kruglov V I, Thomsen B C, Dudley J M, Harvey J D 2000 Phys. Rev. Lett. 84 6010Google Scholar
[22] BoyD G D, Kleinman D A 1968 J. Appl. Phys. 39 3597Google Scholar
-
-
[1] 付思 2013 硕士学位论文 (北京: 北京交通大学)
Fu S 2013 M. S. Thesis (Beijing: Beijing Jiaotong University) (in Chinese)
[2] Jazayerifar M, Warm S, Elschner R, Kroushkov D, Sackey I, Meuer C, Schubert C, Petermann K 2013 J. Lightwave Technol. 31 1454Google Scholar
[3] Sinclair L C, Deschênes J D, Sonderhouse L, Swann W C, Khader I H, Baumann E, Newbury N R, Coddington I 2015 Rev. Sci. Instrum 86 081301Google Scholar
[4] Meng F, Cao S Y, Zhao G Z, Zhao Y, Fang Z J 2015 Chin. J. Las. 42 0702012
[5] 景磊, 姚建铨, 陆颖, 黄晓慧 2012 天津大学学报 45 95
Jing L, Yao J Q, Lu Y, Huang X H 2012 J. Tianjin Univ. 45 95
[6] Li M, Liu K, Jing W C, Peng G D 2010 J. Opt. Soc. Korea 14 14Google Scholar
[7] 王强, 许可, 姚晨雨, 王震, 常军, 任伟 2018 中国激光 45 106
Wang Q, Xu K, Yao C Y, Wang Z, Chang J, Ren W 2018 Chin. J. Las. 45 106
[8] 李彦, 黎珂钦, 金靖 2017 中国激光 44 253
Li Y, Li K Q, Jin J 2017 Chin. J. Las. 44 253
[9] Kang J Q, Kong C H, Feng P P, Li C, Luo Z C, Edmund Y L, Kevin K T, Kenneth K Y W 2018 Conference on Lasers and Electro-Optics San Jose, California, United State, May 13−18, 2018 pSW4J.5
[10] Huang L, Zhou X, Tang S 2018 J. Biomed. Opt. 23 1
[11] 刘观辉, 裴丽, 宁提纲, 高篙, 李晶, 张义军 2012 61 094205Google Scholar
Liu G H, Pei L, Ning T G, Gao S, Li J, Zhang Y J 2012 Acta Phys. Sin. 61 094205Google Scholar
[12] 刘欢, 巩马理, 曹士英, 林百科, 方占军 2015 64 114210Google Scholar
Liu H, Gong M L, Cao S Y, Lin B K, Fang Z J 2015 Acta Phys. Sin. 64 114210Google Scholar
[13] Eidam T, Hanf S, Seise E, Andersen T V, Gabler T, Wirth C, Schreiber T, Limpert J, Tünnermann A 2010 Opt. Lett. 35 94Google Scholar
[14] Eidam T, Rothhardt J, Stutzki F, Jansen F, Hädrich S, Carstens H, Jauregui C, Limpert J, Tünnermann A 2011 Opt. Express 19 255Google Scholar
[15] Sobon G, Kaczmarek P R, Sliwinska D, Sotor J, Abramski K M 2014 IEEE J. Sel. Top. Quantum Electron. 20 492Google Scholar
[16] 李浪, 刘洋, 王超, 潘海峰 2016 激光技术 40 307Google Scholar
Li L, Liu Y, Wang C, Pan H F 2016 Laser Technol. 40 307Google Scholar
[17] Ou S M, Liu G Y, Lei H, Zhang Z G, Zhang Q M 2017 Chin. Phys. Lett. 34 074207Google Scholar
[18] Sun J, Zhou Y, Dai Y T, Li J Q, Yin F F, Dai J, Xu K 2018 Appl. Opt. 57 1492Google Scholar
[19] 延凤平, 毛向桥, 王琳, 傅永军, 魏淮, 郑凯, 龚桃荣, 刘鹏, 陶沛琳, 简水生 2009 58 6296Google Scholar
Yan F P, Mao X Q, Wang L, Fu Y J, Wei H, Zheng K, Gong T R, Liu P, Tao P L, Jian S S 2009 Acta Phys. Sin. 58 6296Google Scholar
[20] Lü Z G, Yang Z, Li F, Yang X J, Tang X J, Yang Y, Li Q L, Wang Y S, Zhao W 2018 Laser Phys. 28 125103Google Scholar
[21] Fermann M, Kruglov V I, Thomsen B C, Dudley J M, Harvey J D 2000 Phys. Rev. Lett. 84 6010Google Scholar
[22] BoyD G D, Kleinman D A 1968 J. Appl. Phys. 39 3597Google Scholar
Catalog
Metrics
- Abstract views: 9309
- PDF Downloads: 105
- Cited By: 0