Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulations of Ti nanoparticles upon heating and cooling on an atomic scale

Wang Ya-Ming Liu Yong-Li Zhang Lin

Citation:

Simulations of Ti nanoparticles upon heating and cooling on an atomic scale

Wang Ya-Ming, Liu Yong-Li, Zhang Lin
PDF
HTML
Get Citation
  • Titanium (Ti) has many advantages including high specific strength, low density, and biocompatibility, and is an excellent option for biomedical implant applications. Traditionally manufacturing processes have great difficulties in processing the hexagonal α-Ti with complex geometries, which would be transformed into the BCC β-Ti at high temperatures. Additive manufacturing (AM) or metal three-dimensional(3D) printing has made it possible to accurately fabricate Ti products with complex morphology. As nanoparticles have been used in the AM processing, an interesting issue arises naturally to understand packing changes of Ti particles with nanometer size during heating and cooling. The information provides the possibility in understanding the processing-structure-property-performance relations in the AM processes with the intent of producing the desirable microstructural features, and thus achieving the mechanical properties comparable or even superior to the conventionally manufactured parts. Because of lacking appropriate experimental techniques, computational approach becomes a good option to obtain various static and dynamic properties of metals reliably, in bulk or surface configurations. On a nanoscale, as the number of atoms in one particle increases, the computational cost increases exponentially and the data complexity increases correspondingly. Molecular dynamics (MD) simulation is a well-established technique to characterize microscopic details in these systems involving combined behaviors of atom movements and locally structural rearrangements. In this paper we conduct the simulations within the framework of embedded atom method provided by Pasianot et al. to study packing transformations of Ti nanoparticles upon heating and cooling on an atomic scale. Based on the calculation of the potential energy per atom, pair distribution function, pair analysis, and the specific heat capacity, the results show that the particle size and temperature changes play key roles in the packing transformations. Small size particles preferentially form icosahedral geometries. As the particle size increases, particles can hold their HCP packing at room temperature. Upon heating, the structural transformation from HCP to BCC occurs in these large size particles, and there coexist the HCP structure and the BCC structure. At a high temperature, these particles present the melting behavior similar to that of the bulk phase. When the molten particles are cooled, the atoms in the particles undergo melting-BCC-HCP structural transition, and the freezing temperature lags behind the melting temperature. The simulations provide an estimate of the critical size, and are applicable to classical theory for melting the Ti particles.
      Corresponding author: Zhang Lin, zhanglin@imp.neu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2016YFB0701304) and the National Natural Science Foundation of China (Grant No. 51671051).
    [1]

    Sharpless N E, DePinho R A 2007 Nat. Rev. Mol. Cell Biol. 8 703Google Scholar

    [2]

    Griffith L G, Naughton G 2002 Science 295 1009Google Scholar

    [3]

    Stoltz J 2012 Regener. Med. Cell. Ther. 77 111

    [4]

    Amini A R, Laurencin C P, Nukavarapu S P 2012 Crit. Rev. Biomed. Eng. 40 363Google Scholar

    [5]

    Wysocki B, Idaszek J, Szlązak K, Strzelczyk K, Brynk T, Kurzydlowski K J, Święszkoski W 2016 Materials 9 197215

    [6]

    Elias C N, Lima J H C, Valiev R, Meyers M A 2008 JOM 60 46

    [7]

    Attar H, Calin M, Zhang L C, Scudino S, Eckert J 2014 Mater. Sci. Eng. A 593 170Google Scholar

    [8]

    Zhang L C, Attar H 2016 Adv. Eng. Mater. 18 463Google Scholar

    [9]

    Froes F H 2012 Adv. Mater. Processes 170 16

    [10]

    Urlea V, Brailovski V 2017 J. Mater. Process. Technol. 242 1Google Scholar

    [11]

    Herzog D, Sevda V, Wycik E, Emmelmann C 2016 Acta Mater. 117 371Google Scholar

    [12]

    Bourell D, Kruth J P, Leu M, Levy G, Rosen D, Beese A M, Clare A 2017 CIRP Annals Manuf. Technol. 66 659Google Scholar

    [13]

    Liu Y J, Li S J, Wang H L, Hou W T, Hao Y L, Yang R, Sercombe T B, Zhang L C 2016 Acta Mater. 113 56Google Scholar

    [14]

    Prashanth K G, Shahabi H S, Attar H, Srivastava V C, Ellendt N, Uhlenwinkel V, Eckert J, Scudino S 2015 Add. Manuf. 6 1

    [15]

    Zhang L C, Klemm D, Eckert J, Hao Y L, Sercombe T B 2011 Scrip. Mater. 65 21

    [16]

    Gu D D, Meiners W, Wissenbach K, Poprawe R 2012 Int. Mater. Rev. 57 133Google Scholar

    [17]

    Sames W J, List F A, Pannala S, Dehoff R R, Babu S S 2016 Int. Mat. Rev. 61 315Google Scholar

    [18]

    Piseri P, Mazza T, Bongiorno G, Lenardi C, Ravagnan L, Foglia F D, DiFonzo F, Coreno M, DeSimone M, Prince K C, Milani P 2006 New J. Phys. 8 136Google Scholar

    [19]

    Qu X 2017 Mater. Sci. Technol. 33 822Google Scholar

    [20]

    Buesser B, Pratsinis S E 2015 J. Phys. Chem. C 119 10116Google Scholar

    [21]

    Mazzone A M 2000 Philos. Mag. B 80 95Google Scholar

    [22]

    Chepkasov I V, Gafner Y Y, Gafner S L 2016 J. Aerosol Sci. 91 33Google Scholar

    [23]

    Gould A L, Logsdail A J, Catlow C R A 2015 J. Phys. Chem. C 119 623Google Scholar

    [24]

    Mottet C, Rossi G, Baletto F, Ferrando R 2005 Phys. Rev. Lett. 95 035501Google Scholar

    [25]

    Zhang L 2016 J. Phys. Soc. Jpn. 85 054602

    [26]

    Levchenko E V, Evteev A V, Lorscheider T, Belova I V, Murch G E 2013 Comput. Mater. Sci. 79 316Google Scholar

    [27]

    Zhang L 2019 Adv. Eng. Mater. 21 1800531Google Scholar

    [28]

    Zhang L 2019 Prog. Nat. Sci.: Mater. Inter. 29 237 Google Scholar

    [29]

    Mendelev M I, Underwood T L, Ackland G J 2016 J. Chem. Phys. 145 154

    [30]

    Farkas D 1994 Modell. Simul. Mater. Sci. Eng. 2 975Google Scholar

    [31]

    Pasianot R, Savino E 1992 Phys. Rev. B 45 12704Google Scholar

    [32]

    Rose J H, Smith J R, Guinea F, Ferrante J 1984 Phys. Rev. B 29 2963

    [33]

    钱泽宇, 张林 2015 64 243103Google Scholar

    Qian Z Y, Zhang L 2015 Acta Phys. Sin. 64 243103Google Scholar

    [34]

    张林, 李蔚, 刘永利, 孙本哲, 王佳庆 2011 金属学报 47 1080

    Zhang L, Li W, Liu Y L, Sun B Z, Wang J Q 2011 Acta Metall. Sin. 47 1080

    [35]

    宋成粉, 樊沁娜, 李蔚, 刘永利, 张林 2011 60 063104Google Scholar

    Song C F, Fan Q N, Li W, Liu Y L, Zhang L 2011 Acta Phys. Sin. 60 063104Google Scholar

    [36]

    Tayson W R, Miller W A 1977 Surf. Sci. 62 267Google Scholar

    [37]

    Aghemenloh E, Idiodi J O A, Azi S O 2009 Comput. Mater. Sci. 10 1016

    [38]

    姬德朋, 王绍青 2015 金属学报 51 597Google Scholar

    Ji D P, Wang S Q 2015 Acta Metall. Sin. 51 597Google Scholar

    [39]

    汤剑锋 2016 博士学位论文(长沙: 湖南大学)

    Tang J F 2016 Ph. D. Dissertation (Changsha: Hunan University) (in Chinese)

    [40]

    Lewis L J, Jensen P, Barrat J L 1997 Phys. Rev. B 56 2248Google Scholar

    [41]

    Kofman R, Cheyssac P, Aouaj A, Lereah Y, Deutschera G, Ben-Davida T, Penissonc J M, Bourret A 1994 Surf. Sci. 303 231Google Scholar

    [42]

    冯黛丽, 冯妍卉, 张欣欣 2013 62 083602Google Scholar

    Feng D L, Feng Y H, Zhang X X 2013 Acta Phys. Sin. 62 083602Google Scholar

    [43]

    汪志刚, 吴亮, 张杨, 文玉华 2011 60 096105

    Wang Z G, Wu L, Zhang Y, Wen Y H 2011 Acta Phys. Sin. 60 096105

    [44]

    Zhang L, Sun H X 2010 Phys. Status. Solidi. A 207 1178Google Scholar

    [45]

    Xu S N, Zhang L, Qi Y, Zhang C B 2010 Phys. B 405 632Google Scholar

  • 图 1  300 K下势能随时间步的变化

    Figure 1.  The potential energy varying with timesteps.

    图 2  原子间键对示意图

    Figure 2.  Schematic diagram of atomic pairs.

    图 3  原子平均能量随温度的变化

    Figure 3.  The average energy per atom for Ti nanoparticles with different sizes.

    图 4  Ti13对分布函数和原子堆积二维投影图

    Figure 4.  The pair distribution functions and atomic packing of the Ti13.

    图 5  Ti57粒子在升温-降温过程中不同温度下的对分布函数 (a)升温; (b)降温

    Figure 5.  The pair distribution functions of Ti57 nanoparticles under heating and cooling processes: (a) Heating process; (b) cooling process.

    图 6  Ti401粒子在升温-降温过程中不同温度下的对分布函数 (a)升温; (b)降温

    Figure 6.  The pair distribution functions of Ti401 nanoparticles under heating and cooling processes: (a) Heating process; (b) cooling process.

    图 7  Ti1111纳米粒子的键对比例分数随温度变化曲线 (a)升温; (b)降温

    Figure 7.  Variations of pair fraction in Ti1111 nanoparticles: (a) Heating process; (b) cooling process.

    图 8  Ti纳米粒子势能-温度斜率随粒径的变化

    Figure 8.  Slope of potential-temperature varying with the diameters of Ti nanoparticles.

    Baidu
  • [1]

    Sharpless N E, DePinho R A 2007 Nat. Rev. Mol. Cell Biol. 8 703Google Scholar

    [2]

    Griffith L G, Naughton G 2002 Science 295 1009Google Scholar

    [3]

    Stoltz J 2012 Regener. Med. Cell. Ther. 77 111

    [4]

    Amini A R, Laurencin C P, Nukavarapu S P 2012 Crit. Rev. Biomed. Eng. 40 363Google Scholar

    [5]

    Wysocki B, Idaszek J, Szlązak K, Strzelczyk K, Brynk T, Kurzydlowski K J, Święszkoski W 2016 Materials 9 197215

    [6]

    Elias C N, Lima J H C, Valiev R, Meyers M A 2008 JOM 60 46

    [7]

    Attar H, Calin M, Zhang L C, Scudino S, Eckert J 2014 Mater. Sci. Eng. A 593 170Google Scholar

    [8]

    Zhang L C, Attar H 2016 Adv. Eng. Mater. 18 463Google Scholar

    [9]

    Froes F H 2012 Adv. Mater. Processes 170 16

    [10]

    Urlea V, Brailovski V 2017 J. Mater. Process. Technol. 242 1Google Scholar

    [11]

    Herzog D, Sevda V, Wycik E, Emmelmann C 2016 Acta Mater. 117 371Google Scholar

    [12]

    Bourell D, Kruth J P, Leu M, Levy G, Rosen D, Beese A M, Clare A 2017 CIRP Annals Manuf. Technol. 66 659Google Scholar

    [13]

    Liu Y J, Li S J, Wang H L, Hou W T, Hao Y L, Yang R, Sercombe T B, Zhang L C 2016 Acta Mater. 113 56Google Scholar

    [14]

    Prashanth K G, Shahabi H S, Attar H, Srivastava V C, Ellendt N, Uhlenwinkel V, Eckert J, Scudino S 2015 Add. Manuf. 6 1

    [15]

    Zhang L C, Klemm D, Eckert J, Hao Y L, Sercombe T B 2011 Scrip. Mater. 65 21

    [16]

    Gu D D, Meiners W, Wissenbach K, Poprawe R 2012 Int. Mater. Rev. 57 133Google Scholar

    [17]

    Sames W J, List F A, Pannala S, Dehoff R R, Babu S S 2016 Int. Mat. Rev. 61 315Google Scholar

    [18]

    Piseri P, Mazza T, Bongiorno G, Lenardi C, Ravagnan L, Foglia F D, DiFonzo F, Coreno M, DeSimone M, Prince K C, Milani P 2006 New J. Phys. 8 136Google Scholar

    [19]

    Qu X 2017 Mater. Sci. Technol. 33 822Google Scholar

    [20]

    Buesser B, Pratsinis S E 2015 J. Phys. Chem. C 119 10116Google Scholar

    [21]

    Mazzone A M 2000 Philos. Mag. B 80 95Google Scholar

    [22]

    Chepkasov I V, Gafner Y Y, Gafner S L 2016 J. Aerosol Sci. 91 33Google Scholar

    [23]

    Gould A L, Logsdail A J, Catlow C R A 2015 J. Phys. Chem. C 119 623Google Scholar

    [24]

    Mottet C, Rossi G, Baletto F, Ferrando R 2005 Phys. Rev. Lett. 95 035501Google Scholar

    [25]

    Zhang L 2016 J. Phys. Soc. Jpn. 85 054602

    [26]

    Levchenko E V, Evteev A V, Lorscheider T, Belova I V, Murch G E 2013 Comput. Mater. Sci. 79 316Google Scholar

    [27]

    Zhang L 2019 Adv. Eng. Mater. 21 1800531Google Scholar

    [28]

    Zhang L 2019 Prog. Nat. Sci.: Mater. Inter. 29 237 Google Scholar

    [29]

    Mendelev M I, Underwood T L, Ackland G J 2016 J. Chem. Phys. 145 154

    [30]

    Farkas D 1994 Modell. Simul. Mater. Sci. Eng. 2 975Google Scholar

    [31]

    Pasianot R, Savino E 1992 Phys. Rev. B 45 12704Google Scholar

    [32]

    Rose J H, Smith J R, Guinea F, Ferrante J 1984 Phys. Rev. B 29 2963

    [33]

    钱泽宇, 张林 2015 64 243103Google Scholar

    Qian Z Y, Zhang L 2015 Acta Phys. Sin. 64 243103Google Scholar

    [34]

    张林, 李蔚, 刘永利, 孙本哲, 王佳庆 2011 金属学报 47 1080

    Zhang L, Li W, Liu Y L, Sun B Z, Wang J Q 2011 Acta Metall. Sin. 47 1080

    [35]

    宋成粉, 樊沁娜, 李蔚, 刘永利, 张林 2011 60 063104Google Scholar

    Song C F, Fan Q N, Li W, Liu Y L, Zhang L 2011 Acta Phys. Sin. 60 063104Google Scholar

    [36]

    Tayson W R, Miller W A 1977 Surf. Sci. 62 267Google Scholar

    [37]

    Aghemenloh E, Idiodi J O A, Azi S O 2009 Comput. Mater. Sci. 10 1016

    [38]

    姬德朋, 王绍青 2015 金属学报 51 597Google Scholar

    Ji D P, Wang S Q 2015 Acta Metall. Sin. 51 597Google Scholar

    [39]

    汤剑锋 2016 博士学位论文(长沙: 湖南大学)

    Tang J F 2016 Ph. D. Dissertation (Changsha: Hunan University) (in Chinese)

    [40]

    Lewis L J, Jensen P, Barrat J L 1997 Phys. Rev. B 56 2248Google Scholar

    [41]

    Kofman R, Cheyssac P, Aouaj A, Lereah Y, Deutschera G, Ben-Davida T, Penissonc J M, Bourret A 1994 Surf. Sci. 303 231Google Scholar

    [42]

    冯黛丽, 冯妍卉, 张欣欣 2013 62 083602Google Scholar

    Feng D L, Feng Y H, Zhang X X 2013 Acta Phys. Sin. 62 083602Google Scholar

    [43]

    汪志刚, 吴亮, 张杨, 文玉华 2011 60 096105

    Wang Z G, Wu L, Zhang Y, Wen Y H 2011 Acta Phys. Sin. 60 096105

    [44]

    Zhang L, Sun H X 2010 Phys. Status. Solidi. A 207 1178Google Scholar

    [45]

    Xu S N, Zhang L, Qi Y, Zhang C B 2010 Phys. B 405 632Google Scholar

  • [1] Guo Wei-Chen, Ai Bao-Quan, He Liang. Reveal flocking phase transition of self-propelled active particles by machine learning regression uncertainty. Acta Physica Sinica, 2023, 72(20): 200701. doi: 10.7498/aps.72.20230896
    [2] Feng Yan-Hui, Feng Dai-Li, Chu Fu-Qiang, Qiu Lin, Sun Fang-Yuan, Lin Lin, Zhang Xin-Xin. Thermal design frontiers of nano-assembled phase change materials for heat storage. Acta Physica Sinica, 2022, 71(1): 016501. doi: 10.7498/aps.71.20211776
    [3] Yin Cheng, Xu Tian, Chen Bing-Yan, Han Qing-Bang. Polarization characteristics of the lattice resonance of metal nanoparticle array. Acta Physica Sinica, 2015, 64(16): 164202. doi: 10.7498/aps.64.164202
    [4] Qian Ze-Yu, Zhang Lin. Atomical simulations of structural changes of a melted TiAl alloy particle on TiAl (001) substrate. Acta Physica Sinica, 2015, 64(24): 243103. doi: 10.7498/aps.64.243103
    [5] Lu Zhi-Peng, Zhu Wen-Jun, Lu Tie-Cheng, Meng Chuan-Min, Xu Liang, Li Xu-Hai. Structural phase transition of Ru at high pressure and temperature. Acta Physica Sinica, 2013, 62(17): 176402. doi: 10.7498/aps.62.176402
    [6] Pan Hao, Hu Xiao-Mian, Wu Zi-Hui, Dai Cheng-Da, Wu Qiang. Numerical study of shock-induced phase transformation of cerium under low pressure. Acta Physica Sinica, 2012, 61(20): 206401. doi: 10.7498/aps.61.206401
    [7] Zhang Yang, Song Xiao-Yan, Xu Wen-Wu, Zhang Zhe-Xu. Thermodynamic study and cellular automaton simulation of thermal stability of nanocrystalline SmCo7 alloy. Acta Physica Sinica, 2012, 61(1): 016102. doi: 10.7498/aps.61.016102
    [8] Shao Chen-Wei, Wang Zhen-Hua, Li Yan-Nan, Zhao Qian, Zhang Lin. Computational study on thermal stability of an AuCu249 alloy cluster on the atomic scale. Acta Physica Sinica, 2011, 60(8): 083602. doi: 10.7498/aps.60.083602
    [9] Wang Zhi-Gang, Wu Liang, Zhang Yang, Wen Yu-Hua. Phase transition and coalescence behavior of fcc Fe nanoparticles: a molecular dynamics study. Acta Physica Sinica, 2011, 60(9): 096105. doi: 10.7498/aps.60.096105
    [10] Ji Zheng-Hua, Zeng Xiang-Hua, Cen Jie-Ping, Tan Ming-Qiu. Electronic structure and phase transformation in ZnSe: An ab initio study. Acta Physica Sinica, 2010, 59(2): 1219-1224. doi: 10.7498/aps.59.1219
    [11] Wang Hui, Liu Jin-Fang, He Yan, Chen Wei, Wang Ying, Gerward L., Jiang Jian-Zhong. Size-induced enhancement of bulk modulus and transition pressure of nanocrystalline Ge. Acta Physica Sinica, 2007, 56(11): 6521-6525. doi: 10.7498/aps.56.6521
    [12] Hu Jian-Gang, Wang Zhen-Xia, Yong Zhen-Zhong, Li Qin-Tao, Zhu Zhi-Yuan. Phase transition from amorphous carbon to diamond nanocrystalline induced by 40Ar+. Acta Physica Sinica, 2006, 55(12): 6538-6542. doi: 10.7498/aps.55.6538
    [13] Cui Xin-Lin, Zhu Wen-Jun, Deng Xiao-Liang, Li Ying-Jun, He Hong-Liang. Molecular dynamic simulation of shock-induced phase transformation in single crystal iron with nano-void inclusion. Acta Physica Sinica, 2006, 55(10): 5545-5550. doi: 10.7498/aps.55.5545
    [14] Zhang Ke-Yan. Phase transition speed research of metal material at laser irradiation medium strength. Acta Physica Sinica, 2004, 53(6): 1815-1819. doi: 10.7498/aps.53.1815
    [15] Zheng Xiao-Ping, Zhang Pei-Feng, Liu Jun, He De-Yan, Ma Jian-Tai. Computer simulation of thin-film epitaxy growth. Acta Physica Sinica, 2004, 53(8): 2687-2693. doi: 10.7498/aps.53.2687
    [16] Liu Rang-Su, Qin Shu-Ping, Hou Zhao-Yang, Chen Xiao-Ying, Liu Feng-Xiang. Simulation study of microstructure transition of liquid metal in during solidification processes. Acta Physica Sinica, 2004, 53(9): 3119-3124. doi: 10.7498/aps.53.3119
    [17] Hu Zhi-Hua, Liao Xian-Bo, Zeng Xiang-Bo, Xu Yan-Yue, Zhang Shi-Bin, Diao Hong-Wei, Kong Guang-Lin. Numerical simulation of nc-Si:H/ c-Si heterojunction solar cells. Acta Physica Sinica, 2003, 52(1): 217-224. doi: 10.7498/aps.52.217
    [18] Xu Bei-Xue, Wu Jin-Lei, Hou Shi-Min, Zhang Xi-Yao, Liu Wei-Min, Xue Zheng-Quan, Wu Quan-De. . Acta Physica Sinica, 2002, 51(7): 1649-1653. doi: 10.7498/aps.51.1649
    [19] YUAN JIAN, REN YONG, LIU FENG, SHAN XIU-MING. PHASE TRANSITION AND COLLECTIVE CORRELATION BEHAVIOR IN THE COMPLEX COMPUTER NETWORK. Acta Physica Sinica, 2001, 50(7): 1221-1225. doi: 10.7498/aps.50.1221
    [20] XU BEI-XUE, WU JUN-LEI, LIU WEI-MIN, YANY HAI, SHAO QING-YI, LIU SHENG, XUE ZENG-QUAN, WU QUAN-DE. ENHANCED PHOTOEMISSION FROM METAL NANOPARTICLE COMPOSITE THIN FILMS (Ag-BaO) DOPED WITH RARE-EARTH ELEMENTS . Acta Physica Sinica, 2001, 50(5): 977-980. doi: 10.7498/aps.50.977
Metrics
  • Abstract views:  8730
  • PDF Downloads:  73
  • Cited By: 0
Publishing process
  • Received Date:  21 February 2019
  • Accepted Date:  06 June 2019
  • Available Online:  01 August 2019
  • Published Online:  20 August 2019

/

返回文章
返回
Baidu
map