Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of polyhedral co-substitution on the crystal structure and luminescence color of Sr2(Al1–xMgx)(Al1–xSi1+x)O7: Eu2+

Wang Qing-Ling Dilare·Halimulati Shen Yu-Ling

Citation:

Effect of polyhedral co-substitution on the crystal structure and luminescence color of Sr2(Al1–xMgx)(Al1–xSi1+x)O7: Eu2+

Wang Qing-Ling, Dilare·Halimulati, Shen Yu-Ling,
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
Get Citation
  • A series of Sr1.98(Al1–xMgx)(Al1–xSi1+x)O7: 2%Eu2+ phosphors is prepared by the high-temperature solid-state reaction method, the crystal structures and luminescent properties of the prepared phosphors are investigated by measuring the X-ray diffraction, luminescent spectra and optical microscope. The isomorphic compounds of Sr2Al2SiO7 and Sr2MgSi2O7 contain tetrahedra including [MgO4], [SiO4] and [AlO4]. Although the valences of the [MgO4]6–, [SiO4]4– and [AlO4]5– groups are different, the charge imbalance occurs when the [MgO4]6– and [SiO4]4– substitutes of [AlO4]5– and [AlO4]5–, respectively. While the groups are co-substituted, the charge imbalance disappears. And the larger volume of [MgO4] and the smaller volume of [SiO4] together replaces the similar volume of [AlO4], resulting in the decrease of [(Si/Al)O4] and increase of [(Mg/Al)O4]. Moreover, the decrease of unit cell parameters c and the increase of a and V due to the increased replacement of Mg2+ (0.57 Å for CN = 4) by Al3+(0.39 Å for CN = 4) and Si4+ (0.26 Å for CN = 4) by Al3+ (0.39 Å for CN = 4) cause the ambient temperature to change, the crystal field splitting of the Eu2+ cation to be weakened, and the emission spectra to be blue-shifted from 503 nm to 467 nm, which are closely related to the local coordination environment of the Eu2+, in addition, this reveals that the emission color of this series of phosphors can be tuned from green with color coordinate (0.2384, 0.3919) to blue (0.1342, 0.1673) by adjusting the chemical compositions via the [MgO4]6– and [SiO4]4– groups’ co-substitution for [AlO4]5–. The full width at half maximumof emission band is 120 nm when x = 0, the photoluminescence emission width decreases monotonically from 89 to 50 nm as x is increased from 0.25 to 1. In other words, the full width at half maximum of emission band exhibits a decreasing trend. The internal quantum efficiency is enhanced with increasing x in Sr1.98(Al1–xMgx)(Al1–xSi1+x)O7: 2%Eu2+ phosphors. These results verify that the groups’ substitutions are enhanced with polyhedron changing in the solid solutions and contribute largely to the luminescence properties of the phosphor.
      Corresponding author: , aierkenjiang@sina.com
    • Funds: Project supported by the National Science Foundation of China (Grant No. 11464045).
    [1]

    Chen M Y, Xia Z G, Molokeev M S, Wang T, Liu Q L 2017 Chem. Mater. 29 1430Google Scholar

    [2]

    Li S X, Wang L, Zhu Q Q, Tang D M, Liu X J, Cheng G F, Lu L, Taked T, Hirosaki N, Huang Z R, Xie R J 2016 J. Mater. Chem. C 4 11219Google Scholar

    [3]

    Li S X, Wang L, Tang M M, Cho Y J, Liu X J, Zhou X T, Lu L, Zhang L, Taked T, Hirosaki N, Xie R J 2018 Chem. Mater. 30 494Google Scholar

    [4]

    Xia Z G, Liu G K, Wen J G, Mei Z G, Balasubramanian M, Molokeev M S, Peng L C, Gu L, Miller D J, Liu Q L, Poeppelmeier K R 2016 J. Am. Chem. Soc. 138 1158Google Scholar

    [5]

    Xia Z G, Poeppelmeier K R 2017 Accounts Chem. Res. 50 1222Google Scholar

    [6]

    Ji H P, Huang Z H, Xia Z G, Molokeev M S, Atuchin V V, Fang M H, Liu Y G 2015 J. Phys. Chem. 119 2038Google Scholar

    [7]

    Xia Z G, Liu Q 2016 Prog. Mater. Sci. 84 59Google Scholar

    [8]

    Ye S, Xiao F, Pan Y X, Ma Y Y, Zhang Q Y 2011 Mat. Sci. Eng. R. 71 1

    [9]

    Shang M M, Liang S S, Qu N R, Lian H Z, Lin J 2017 Chem. Mater. 29 1813Google Scholar

    [10]

    Dubey S, Deshmukh P, Satapathy S, Singh M K, Gupta P K 2016 Luminesence 32 839Google Scholar

    [11]

    赵永旺, 苏全帅, 张超, 安胜利 2016 稀土 37 85Google Scholar

    Zhao Y W, Su Q S, Zhang C, An S L 2016 Chinese Rare Earths 37 85Google Scholar

    [12]

    赵永旺, 张超, 赵文广, 安胜利 2017 稀土 38 87

    Zhao Y W, Zhang C, Zhao G W, An S L 2017 Chinese Rare Earths 38 87

    [13]

    Shuang Y M, Zhu F L, Wang J D 2008 J. Func. Mater. 39 1078

    [14]

    Xia Z G, Ma C G, Molokeev M S, Liu Q L, Rickert K, Poeppelmeier K R 2015 J. Am. Chem. Soc. 137 12494Google Scholar

    [15]

    Lu F C, Bai L J, Dang W, Yang Z P, Lin P 2015 ECS J. Solid State Sc. 4 27Google Scholar

    [16]

    Tam T T H, Hung N Y, Lien N D K, Kien N D T, Huy P T 2016 Sci. Adv. Mater. 1 204Google Scholar

    [17]

    梁敬魁 2011 粉末衍射法测定晶体结构(上册)(北京:科学出版社) 第78页

    Liang J K 2003 Determination of Crystal Structure by Powder Diffraction (Vol. 1) (Beijing: Science Press) p78 (in Chinese)

    [18]

    Denault K A, George N C, Paden S R, Brinkley S, Mikhailovsky A A, Neuefeind J, DenBaars S P, Seshadri R J 2012 Mater. Chem. 22 18204Google Scholar

    [19]

    Denault K A, Brgoch J, Gaultois M W, Mikhailovsky A, Petry R, Winkler H, DenBaars S P, Seshadri R 2014 Chem. Mater. 26 2275Google Scholar

    [20]

    Guo Y, Park S H, Choi B C, Jeong J H, Kim J H 2018 J. Alloy. Compd. 742 159Google Scholar

  • 图 1  (a) 样品C的XRD精修图谱;(b) Sr1.98(Al1xMgx)(Al1xSi1+x)O7: 2%Eu2+(0 ≤ x ≤ 1)荧光粉的XRD图谱和2θ范围为15°—23°的峰位移动放大图;(c)晶胞参数随浓度x变化曲线图

    Figure 1.  (a) Rietveld refinement of C; (b) XRD patterns of the Sr1.98(Al1–xMgx)(Al1–xSi1+x)O7: 2%Eu2+(0 ≤ x ≤ 1), the right inset is the magnified XRD patterns for 2θ region form 15° to 23°; (c) give the cell parameters (a/b, c) and volume (V), respectively, as a function of x concentration

    图 2  Sr1.98(Al1-xMgx)(Al1-xSi1+x)O7: 2%Eu2+(0 ≤ x ≤ 1)荧光粉的归一化激发光谱

    Figure 2.  Normalized excitation spectra of Sr1.98(Al1xMgx) (Al1xSi1+x)O7: 2%Eu2+(0 ≤ x ≤ 1) phosphors

    图 3  (a), (b)在波长365 nm激发下样品A, C, E的光学显微镜图像和Sr1.98(Al1xMgx)(Al1xSi1+x)O7: 2%Eu2+(0 ≤ x ≤ 1)荧光粉的归一化发射光谱

    Figure 3.  (a) Optical microscope image of A, C, E excited at a wavelength of 365 nm and (b) normalized emission spectra of Sr1.98(Al1xMgx)(Al1xSi1+x)O7: 2%Eu2+(0 ≤ x ≤ 1) phosphors under 365 nm UV light excitation

    图 4  Sr1.98(Al1xMgx)(Al1xSi1+x)O7: 2%Eu2+(0 ≤ x ≤ 1)在365 nm激发波长下的色坐标(插图为实物照片)

    Figure 4.  Color coordinates of Sr1.98(Al1xMgx)(Al1xSi1+x)O7: 2%Eu2+(0 ≤ x ≤ 1) under λex = 365 nm in the CIE chromaticity diagram (the insets show the corresponding digital photos)

    图 5  在荧光粉Sr1.98(Al1xMgx)(Al1xSi1+x)O7: 2%Eu2+(0 ≤ x ≤ 1)中, 随着x的增加, 多面体[(Si/Al)O4]的收缩和多面体[(Mg/Al)O4]的膨胀对发光中心多面体的扭曲

    Figure 5.  Increasing of x leads to polyhedral [(Si/Al)O4] shrinkage and polyhedral [(Mg/Al)O4] expansion distortion the luminescent center polyhedron of Sr1.98(Al1xMgx)(Al1xSi1+x)O7: 2%Eu2+(0 ≤ x ≤ 1) phosphors

    图 6  Eu2+的5d能级变化示意图, VB, CB和CFS分别代表价带, 导带和晶体场劈裂

    Figure 6.  Schematics of the changes in 5d energy levels of the activator. CFS, CB, and VB are crystal field splitting, the conduction band, and the valence band, respectively

    表 1  Sr1.98(Al1–xMgx)(Al1xSi1+x)O7: 2%Eu2+(0≤x ≤ 1)荧光粉发射波长的半高宽, 色坐标值和内量子效率

    Table 1.  The PL bands, color coordinate value, and internal quantum efficiency of Sr1.98(Al1xMgx)(Al1xSi1+x)O7: 2%Eu2+(0 ≤ x ≤ 1) phosphors

    样品 发射光谱 色坐标 IQY
    λem/nm FWHM/nm x y
    A 503 120 0.2384 0.3919 4.3%
    B 472 89 0.1972 0.2951 6.1%
    C 470 61 0.1675 0.2312 7.3%
    D 468 54 0.1463 0.1873 9.0%
    E 468 50 0.1342 0.1673 23%
    DownLoad: CSV
    Baidu
  • [1]

    Chen M Y, Xia Z G, Molokeev M S, Wang T, Liu Q L 2017 Chem. Mater. 29 1430Google Scholar

    [2]

    Li S X, Wang L, Zhu Q Q, Tang D M, Liu X J, Cheng G F, Lu L, Taked T, Hirosaki N, Huang Z R, Xie R J 2016 J. Mater. Chem. C 4 11219Google Scholar

    [3]

    Li S X, Wang L, Tang M M, Cho Y J, Liu X J, Zhou X T, Lu L, Zhang L, Taked T, Hirosaki N, Xie R J 2018 Chem. Mater. 30 494Google Scholar

    [4]

    Xia Z G, Liu G K, Wen J G, Mei Z G, Balasubramanian M, Molokeev M S, Peng L C, Gu L, Miller D J, Liu Q L, Poeppelmeier K R 2016 J. Am. Chem. Soc. 138 1158Google Scholar

    [5]

    Xia Z G, Poeppelmeier K R 2017 Accounts Chem. Res. 50 1222Google Scholar

    [6]

    Ji H P, Huang Z H, Xia Z G, Molokeev M S, Atuchin V V, Fang M H, Liu Y G 2015 J. Phys. Chem. 119 2038Google Scholar

    [7]

    Xia Z G, Liu Q 2016 Prog. Mater. Sci. 84 59Google Scholar

    [8]

    Ye S, Xiao F, Pan Y X, Ma Y Y, Zhang Q Y 2011 Mat. Sci. Eng. R. 71 1

    [9]

    Shang M M, Liang S S, Qu N R, Lian H Z, Lin J 2017 Chem. Mater. 29 1813Google Scholar

    [10]

    Dubey S, Deshmukh P, Satapathy S, Singh M K, Gupta P K 2016 Luminesence 32 839Google Scholar

    [11]

    赵永旺, 苏全帅, 张超, 安胜利 2016 稀土 37 85Google Scholar

    Zhao Y W, Su Q S, Zhang C, An S L 2016 Chinese Rare Earths 37 85Google Scholar

    [12]

    赵永旺, 张超, 赵文广, 安胜利 2017 稀土 38 87

    Zhao Y W, Zhang C, Zhao G W, An S L 2017 Chinese Rare Earths 38 87

    [13]

    Shuang Y M, Zhu F L, Wang J D 2008 J. Func. Mater. 39 1078

    [14]

    Xia Z G, Ma C G, Molokeev M S, Liu Q L, Rickert K, Poeppelmeier K R 2015 J. Am. Chem. Soc. 137 12494Google Scholar

    [15]

    Lu F C, Bai L J, Dang W, Yang Z P, Lin P 2015 ECS J. Solid State Sc. 4 27Google Scholar

    [16]

    Tam T T H, Hung N Y, Lien N D K, Kien N D T, Huy P T 2016 Sci. Adv. Mater. 1 204Google Scholar

    [17]

    梁敬魁 2011 粉末衍射法测定晶体结构(上册)(北京:科学出版社) 第78页

    Liang J K 2003 Determination of Crystal Structure by Powder Diffraction (Vol. 1) (Beijing: Science Press) p78 (in Chinese)

    [18]

    Denault K A, George N C, Paden S R, Brinkley S, Mikhailovsky A A, Neuefeind J, DenBaars S P, Seshadri R J 2012 Mater. Chem. 22 18204Google Scholar

    [19]

    Denault K A, Brgoch J, Gaultois M W, Mikhailovsky A, Petry R, Winkler H, DenBaars S P, Seshadri R 2014 Chem. Mater. 26 2275Google Scholar

    [20]

    Guo Y, Park S H, Choi B C, Jeong J H, Kim J H 2018 J. Alloy. Compd. 742 159Google Scholar

  • [1] Liang Ai-Hua, Wang Xu-Sheng, Li Guo-Rong, Zheng Liao-Ying, Jiang Xiang-Ping, Hu Rui. Properties of Photoluminescence and mechanoluminescence of KxNa1–xNbO3:Pr3+ ferroelectric. Acta Physica Sinica, 2022, 71(16): 167801. doi: 10.7498/aps.71.20220501
    [2] Ma Teng-Yu, Li Wan-Jun, He Xian-Wang, Hu Hui, Huang Li-Juan, Zhang Hong, Xiong Yuan-Qiang, Li Hong-Lin, Ye Li-Juan, Kong Chun-Yang. Size Regulation and Photoluminescence Properties of β-Ga2O3 Nanomaterials. Acta Physica Sinica, 2020, 69(10): 108102. doi: 10.7498/aps.69.20200158
    [3] Liu Zi, Zhang Heng, Wu Hao, Liu Chang. Enhancement of photoluminescence from zinc oxide by aluminum nanoparticle surface plasmon. Acta Physica Sinica, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [4] Huang Jing-Wen, Luo Li-Qiong, Jin Bo, Chu Shi-Jin, Peng Ru-Fang. Synthesis and photoluminescence property of hexangular star MoSe2 bilayer. Acta Physica Sinica, 2017, 66(13): 137801. doi: 10.7498/aps.66.137801
    [5] Mao Jin-Wei, Lü Shu-Chen, Qu Xiu-Rong, He Dong-Li, Meng Qing-Yu. Preparation and luminescent properties of Sr0.8-xBaxEu0.2WO4 red phosphors for white LED. Acta Physica Sinica, 2013, 62(3): 037803. doi: 10.7498/aps.62.037803
    [6] Zhang Li, Xu Ming, Yu Fei, Yuan Huan, Ma Tao. Crystal structures and optical properties of(Fe, Co)-codoped ZnO thin films. Acta Physica Sinica, 2013, 62(2): 027501. doi: 10.7498/aps.62.027501
    [7] Lu Fang, Zhang Xing-Hua, Lu Zun-Ming, Xu Xue-Wen, Tang Cheng-Chun. The influences of Sr or Ba substitution on the structure and luminescence properties for Ca2.955Si2O7: 0.045Eu2+ phosphor. Acta Physica Sinica, 2012, 61(14): 144209. doi: 10.7498/aps.61.144209
    [8] Wu Yan-Nan, Xu Ming, Wu Ding-Cai, Dong Cheng-Jun, Zhang Pei-Pei, Ji Hong-Xuan, He Lin. Effects of Co and/or Sn doping on crystal structures and optical properties of ZnO thin films. Acta Physica Sinica, 2011, 60(7): 077505. doi: 10.7498/aps.60.077505
    [9] Lin Tao, Wan Neng, Han Min, Xu Jun, Chen Kun-Ji. Synthesis,structures and luminescence properties of SnO2 nanoparticles. Acta Physica Sinica, 2009, 58(8): 5821-5825. doi: 10.7498/aps.58.5821
    [10] Fang Qing-Qing, Wang Wei-Na, Zhou Jun, Wang Sheng-Nan, Yan Fang-Liang, Liu Yan-Mei, Li Yan, Lü Qing-Rong. Photoluminescence characteristics of Zn1-xMgxO films. Acta Physica Sinica, 2009, 58(8): 5836-5841. doi: 10.7498/aps.58.5836
    [11] Wu Xiao-Li, Chen Chang-Le, Han Li-An, Luo Bing-Cheng, Gao Guo-Mian, Zhu Jian-Hua. Influence of substrate temperature on the structure and photoluminescence of Mg0.05Zn0.95O thin films grown by pulsed laser deposition. Acta Physica Sinica, 2008, 57(6): 3735-3739. doi: 10.7498/aps.57.3735
    [12] Ma Hai-Lin, Su Qing, Lan Wei, Liu Xue-Qin. Influence of oxygen pressure on the structure and photoluminescence of β-Ga2O3 nano-material prepared by thermal evaporation. Acta Physica Sinica, 2008, 57(11): 7322-7326. doi: 10.7498/aps.57.7322
    [13] Luo Jian-Qiao, Sun Dun-Lu, Zhang Qing-Li, Liu Wen-Peng, Gu Chang-Jiang, Wu Lu-Sheng, Yin Shao-Tang. Up-conversion luminescence in Er3+/Yb3+-codoped Gd3Sc2Ga3O12 laser crystals. Acta Physica Sinica, 2008, 57(12): 7712-7716. doi: 10.7498/aps.57.7712
    [14] Feng Xian-Jin, Ma Jin, Ge Song-Hua, Ji Feng, Wang Yong-Li, Yang Fan, Ma Hong-Lei. Structural and photoluminescence properties for SnO2:Sb films prepared on Al2O3 substrate. Acta Physica Sinica, 2007, 56(8): 4872-4876. doi: 10.7498/aps.56.4872
    [15] Peng Zhi-Wei, Wang Ling-Ling, Liu Huang-Qing, Huang Wei-Qing, Zou Bing-Suo. Combustion synthesis and photoluminescence of nanocrystalline Gd2O3:Eu3+. Acta Physica Sinica, 2007, 56(2): 1162-1166. doi: 10.7498/aps.56.1162
    [16] Zhu Zhen-Hua, Lei Ming-Kai. Structure and photoluminescence of Er3+-doped Al2O3 composite powders by mixing with SiO2. Acta Physica Sinica, 2006, 55(9): 4956-4961. doi: 10.7498/aps.55.4956
    [17] Wang Yu-Heng, Ma Jin, Ji Feng, Yu Xu-Hu, Zhang Xi-Jian, Ma Hong-Lei. Structural and photoluminescence characters of SnO22:Sb thin films pr epared by rf magnetron sputtering. Acta Physica Sinica, 2005, 54(4): 1731-1735. doi: 10.7498/aps.54.1731
    [18] Li Shan-Feng, Zhang Qing-Yu. Absorption and photoluminescence properties Er/Yb co-doped soda-silicate glasses. Acta Physica Sinica, 2005, 54(11): 5462-5467. doi: 10.7498/aps.54.5462
    [19] Ma Zhong-Yuan, Huang Xin-Fan, Zhu Da, Li Wei, Chen Kun-Ji, Feng Duan. Photoluminescence from a-Si:H/SiO2 multilayers fabricated using in situ layer by layer plasma oxidation. Acta Physica Sinica, 2004, 53(8): 2746-2750. doi: 10.7498/aps.53.2746
    [20] Shao Jun. Optimal photoluminescence spectrum from Ti-doped ZnTe. Acta Physica Sinica, 2003, 52(7): 1743-1747. doi: 10.7498/aps.52.1743
Metrics
  • Abstract views:  10164
  • PDF Downloads:  55
  • Cited By: 0
Publishing process
  • Received Date:  26 December 2018
  • Accepted Date:  06 March 2019
  • Available Online:  01 May 2019
  • Published Online:  20 May 2019

/

返回文章
返回
Baidu
map