Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Magnetic dynamic properties of defective iron nanorings

Ye Qing-Ying Wang Wen-Jing Deng Chu-Chu Chen Shui-Yuan Zhang Xin-Yuan Wang Ya-Jing Huang Qiu-Yi Huang Zhi-Gao

Citation:

Magnetic dynamic properties of defective iron nanorings

Ye Qing-Ying, Wang Wen-Jing, Deng Chu-Chu, Chen Shui-Yuan, Zhang Xin-Yuan, Wang Ya-Jing, Huang Qiu-Yi, Huang Zhi-Gao
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Magnetic nanorings can be high-density integrated because their stray field is low in vortex states. In this paper, the magnetic dynamic properties of the defective Fe nanorings are studied. For convenience, we assume the defect to be round in shape, whose coordinate is (0, Y). Based on the Monte Carlo method and fast Fourier transformation micromagnetism method, the magnetic properties of the defective Fe nanorings, such as hysteresis loops, spin configurations, remanence, etc., are studied. The simulation results indicate that the magnetization process of the system can be affected by the sizes and locations of the defects. When the defects are small, the system has a bistable state, which is similar to the system without defects. The transition state of the system increases as the defects are enlarged, and the bistable state will be no longer so visible. The system becomes open when the defects are big enough. Meanwhile, its hysteresis loop presents a rectangular shape which is similar to cluster’s or quantum dot’s. The remanence increases with the radius of defect increasing. These results are in accord with the magnetic properties of asymmetric magnetic nanoring. In order to explain the above results, the spin configurations of the system are shown. The spins of defective nanorings are divided into two parts, i.e., upper half part and lower half part, which are represented as blue and black spins respectively. When the system does not have any defects, the number of blue spins is equal to black spins’. Therefore the remanence is zero when the system is in a vortex state. It is found that the number of blue spins decreases as the radius of defect increases. This situation results in the total magnetic moment increasing, which leads the remanence to increase. However, the relationship between remanence and Y (the distance between center of nanoring and center of defect) is nonlinear. The remanence first increases and then decreases with Y increasing. The simulation results can be explained by changing the spin configuration. By analyzing the spins of the upper and lower part, the magnetic moment of the system is analyzed. It is found that the number of the spins and the local vortexes can affect the remanence significantly. The results show that the magnetic properties of Fe nanorings can be affected by the defect.
      Corresponding author: Ye Qing-Ying, qyye@fjnu.edu.cn ; Huang Zhi-Gao, zghuang@fjnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61574037) and the Natural Science Foundation of Fujian Province, China (Grant Nos. 2017J01553, 2016J01007).
    [1]

    Wang Y G, Zhou K J, Huang G, Hensley C, Huang X N, Ma X P, Zhao T, Baran D S, Ralph J D, Gao J M 2014 Nat. Mater. 13 204Google Scholar

    [2]

    Li H, Cao Z M, Lin J Y, Zhao H, Jiang Q R, Jiang Z Y, Liao H G, Qin K, Xie Z X 2018 Nanoscale 10 1930Google Scholar

    [3]

    Kim D, Lee D R, Choi Y, Metlushko V 2012 Appl. Phys. Lett. 101 192404Google Scholar

    [4]

    王早, 张国峰, 李斌, 陈瑞云, 秦成兵, 肖连团, 贾锁堂 2015 64 247803Google Scholar

    Wang Z, Zhang G F, Li B, Chen R Y, Qin C B, Xiao L T, Jia S T 2015 Acta Phys. Sin. 64 247803Google Scholar

    [5]

    Fatemi M, Mollania N, Momeni-Moghaddam M, Sadeghifar F 2018 J. Biotechnol. 270 1Google Scholar

    [6]

    李建昌, 邵思佳 2017 66 017101Google Scholar

    Li J C, Shao S J 2017 Acta Phys. Sin. 66 017101Google Scholar

    [7]

    何学敏, 钟伟, 都有为 2018 67 227501Google Scholar

    He X M, Zhong W, Du Y W 2018 Acta Phys. Sin. 67 227501Google Scholar

    [8]

    林枝钦 2009 硕士学位论文(福州: 福建师范大学)

    Lin Z Q 2009 M. S. Thesis (Fzhou: Fujian Normal University) (in Chinese)

    [9]

    Yoon S, Lee S H, Kwak, Nam C, Kim W B, Cho B K 2014 J. Appl. Phys. 115 17B511Google Scholar

    [10]

    Liang Y Z, Li L M, Lu M D, Yuan H Z 2018 Nanoscale 10 548Google Scholar

    [11]

    Parkinson P, Kamonsutthipaijit N, Anderson H L, Herz L M 2016 ACS Nano 10 5933Google Scholar

    [12]

    Yannouleas C, Romanovsky I, Landman U 2015 J. Phys. Chem. C 119 11131Google Scholar

    [13]

    张中月, 孙中华, 王红艳, 张志东 2011 60 047808Google Scholar

    Zhang Z Y, Sun Z H, Wang Y H, Zhang Z D 2011 Acta Phys. Sin. 60 047808Google Scholar

    [14]

    王同标, 刘念华, 于天宝, 徐旭明, 廖清华 2014 63 017301Google Scholar

    Wang T B, Liu N H, Yu T B, Xu X M, Liao Q H 2014 Acta Phys. Sin. 63 017301Google Scholar

    [15]

    吕江涛, 王凤文, 马振鹤, 司光远 2013 62 057804Google Scholar

    Lü J T, Wang F W, Ma Z H, Si G Y 2013 Acta Phys. Sin. 62 057804Google Scholar

    [16]

    Chen X, Qin J, Han X F, Liu Y 2018 Appl. Phys. Lett. 113 142406Google Scholar

    [17]

    Liu H, Wei H, Han X F, Yu G, Zhan W, Gall S, Lu Y, Hehn M, Mangin S, Sun M, Liu Y H, Cheng H 2018 Phys. Rev. Appl. 10 054013Google Scholar

    [18]

    Singh N, Goolaup S, Tan W, Adeyeye A O, Balasubramaniam N 2007 Phys. Rev. B 75 104407Google Scholar

    [19]

    Palma J L, Morales-Concha C, Leighton B, Escrig D J, Altbir J 2012 J. Magn. Magn. Mater. 324 637Google Scholar

    [20]

    Avila J I, Tumelero M A, Pasa A A, Viegas A D C 2015 J. Appl. Phys. 117 103901Google Scholar

    [21]

    Zhu F Q, Chern G W, Tchernyshyov O, Zhu X C, Zhu J G, Chien C L 2006 Phys. Rev. Lett. 96 027205Google Scholar

    [22]

    钟克华, 冯倩, 翁臻臻, 黄志高 2005 计算物理 22 534Google Scholar

    Zhong K H, Feng Q, Weng Z Z, Huang Z G 2005 Chin. J. Comput. Phys. 22 534Google Scholar

    [23]

    Huang Z G, Chen Z G, Peng K, Wang D H, Zhang W Y, Zhang F M, Du Y W 2004 Phys. Rev. B 69 094420Google Scholar

    [24]

    Huang Z, Chen Z, Zhang F, Du Y 2004 Eur. Phys. J. B 37 177

    [25]

    Huang Z, Chen Z, Li S, Feng Q, Zhang F, Du Y 2006 Eur. Phys. J. B 51 65Google Scholar

    [26]

    Ye Q, Feng Q, Chen S, Zhang J, Huang Z 2009 J. Nanosci. Nanotechnol. 9 1635Google Scholar

  • 图 1  缺陷铁纳米环模型

    Figure 1.  Sketch map of defective Fe nanoring.

    图 2  不同D值的纳米环磁滞回线(Y = 30 nm, R = 100 nm, r = 40 nm)

    Figure 2.  Hysteresis loops of defective Fe nanorings with different D (Y = 30 nm, R = 100 nm, r = 40 nm).

    图 3  不同Y值条件下系统剩磁随D值的变化(R = 100 nm, r = 40 nm)

    Figure 3.  The relation between the remanence and D with different Y (R = 100 nm, r = 40 nm).

    图 4  不同D值的铁纳米环零场下的自旋组态图(Y = 30 nm, R = 100 nm, r = 40 nm)

    Figure 4.  The spin configurations of Fe nanorings for different D with zero field (Y = 30 nm, R = 100 nm, r = 40 nm)

    图 5  剩磁随缺陷Y值变化曲线(D = 30 nm, R = 100 nm, r = 40 nm)

    Figure 5.  The relation between the remanence and Y (D = 30 nm, R = 100 nm, r = 40 nm).

    图 6  不同Y值的铁纳米环的自旋组态图(D = 30 nm, R = 100 nm, r = 40 nm)

    Figure 6.  The spin configurations of Fe nanorings for different Y (D = 30 nm, R = 100 nm, r = 40 nm).

    Baidu
  • [1]

    Wang Y G, Zhou K J, Huang G, Hensley C, Huang X N, Ma X P, Zhao T, Baran D S, Ralph J D, Gao J M 2014 Nat. Mater. 13 204Google Scholar

    [2]

    Li H, Cao Z M, Lin J Y, Zhao H, Jiang Q R, Jiang Z Y, Liao H G, Qin K, Xie Z X 2018 Nanoscale 10 1930Google Scholar

    [3]

    Kim D, Lee D R, Choi Y, Metlushko V 2012 Appl. Phys. Lett. 101 192404Google Scholar

    [4]

    王早, 张国峰, 李斌, 陈瑞云, 秦成兵, 肖连团, 贾锁堂 2015 64 247803Google Scholar

    Wang Z, Zhang G F, Li B, Chen R Y, Qin C B, Xiao L T, Jia S T 2015 Acta Phys. Sin. 64 247803Google Scholar

    [5]

    Fatemi M, Mollania N, Momeni-Moghaddam M, Sadeghifar F 2018 J. Biotechnol. 270 1Google Scholar

    [6]

    李建昌, 邵思佳 2017 66 017101Google Scholar

    Li J C, Shao S J 2017 Acta Phys. Sin. 66 017101Google Scholar

    [7]

    何学敏, 钟伟, 都有为 2018 67 227501Google Scholar

    He X M, Zhong W, Du Y W 2018 Acta Phys. Sin. 67 227501Google Scholar

    [8]

    林枝钦 2009 硕士学位论文(福州: 福建师范大学)

    Lin Z Q 2009 M. S. Thesis (Fzhou: Fujian Normal University) (in Chinese)

    [9]

    Yoon S, Lee S H, Kwak, Nam C, Kim W B, Cho B K 2014 J. Appl. Phys. 115 17B511Google Scholar

    [10]

    Liang Y Z, Li L M, Lu M D, Yuan H Z 2018 Nanoscale 10 548Google Scholar

    [11]

    Parkinson P, Kamonsutthipaijit N, Anderson H L, Herz L M 2016 ACS Nano 10 5933Google Scholar

    [12]

    Yannouleas C, Romanovsky I, Landman U 2015 J. Phys. Chem. C 119 11131Google Scholar

    [13]

    张中月, 孙中华, 王红艳, 张志东 2011 60 047808Google Scholar

    Zhang Z Y, Sun Z H, Wang Y H, Zhang Z D 2011 Acta Phys. Sin. 60 047808Google Scholar

    [14]

    王同标, 刘念华, 于天宝, 徐旭明, 廖清华 2014 63 017301Google Scholar

    Wang T B, Liu N H, Yu T B, Xu X M, Liao Q H 2014 Acta Phys. Sin. 63 017301Google Scholar

    [15]

    吕江涛, 王凤文, 马振鹤, 司光远 2013 62 057804Google Scholar

    Lü J T, Wang F W, Ma Z H, Si G Y 2013 Acta Phys. Sin. 62 057804Google Scholar

    [16]

    Chen X, Qin J, Han X F, Liu Y 2018 Appl. Phys. Lett. 113 142406Google Scholar

    [17]

    Liu H, Wei H, Han X F, Yu G, Zhan W, Gall S, Lu Y, Hehn M, Mangin S, Sun M, Liu Y H, Cheng H 2018 Phys. Rev. Appl. 10 054013Google Scholar

    [18]

    Singh N, Goolaup S, Tan W, Adeyeye A O, Balasubramaniam N 2007 Phys. Rev. B 75 104407Google Scholar

    [19]

    Palma J L, Morales-Concha C, Leighton B, Escrig D J, Altbir J 2012 J. Magn. Magn. Mater. 324 637Google Scholar

    [20]

    Avila J I, Tumelero M A, Pasa A A, Viegas A D C 2015 J. Appl. Phys. 117 103901Google Scholar

    [21]

    Zhu F Q, Chern G W, Tchernyshyov O, Zhu X C, Zhu J G, Chien C L 2006 Phys. Rev. Lett. 96 027205Google Scholar

    [22]

    钟克华, 冯倩, 翁臻臻, 黄志高 2005 计算物理 22 534Google Scholar

    Zhong K H, Feng Q, Weng Z Z, Huang Z G 2005 Chin. J. Comput. Phys. 22 534Google Scholar

    [23]

    Huang Z G, Chen Z G, Peng K, Wang D H, Zhang W Y, Zhang F M, Du Y W 2004 Phys. Rev. B 69 094420Google Scholar

    [24]

    Huang Z, Chen Z, Zhang F, Du Y 2004 Eur. Phys. J. B 37 177

    [25]

    Huang Z, Chen Z, Li S, Feng Q, Zhang F, Du Y 2006 Eur. Phys. J. B 51 65Google Scholar

    [26]

    Ye Q, Feng Q, Chen S, Zhang J, Huang Z 2009 J. Nanosci. Nanotechnol. 9 1635Google Scholar

Metrics
  • Abstract views:  7349
  • PDF Downloads:  32
  • Cited By: 0
Publishing process
  • Received Date:  26 December 2018
  • Accepted Date:  25 March 2019
  • Available Online:  01 May 2019
  • Published Online:  20 May 2019

/

返回文章
返回
Baidu
map