Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Quantum metrology with atom and light correlation

Feng Xiao-Tian Yuan Chun-Hua Chen Li-Qing Chen Jie-Fei Zhang Ke-Ye Zhang Wei-Ping

Citation:

Quantum metrology with atom and light correlation

Feng Xiao-Tian, Yuan Chun-Hua, Chen Li-Qing, Chen Jie-Fei, Zhang Ke-Ye, Zhang Wei-Ping
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The measurement of physical quantities and measurement units standard promote the development of metrology. Especially, the developments of laser interference and atomic frequency standard bring a revolutionary leap for metrology. Many precision measurement techniques have been proposed and experimentally demonstrated, such as gravitational wave measurements and laser gyroscopes based on laser interferometry, and atomic clocks and atomic gyroscopes based on the atom interferometry. Recently, a new branch of science, quantum metrology, has grown up to further explore and exploit the quantum techniques for precision measurement of physical quantities.#br#This paper will focus on recent developments in quantum metrology and interference based on coherence and correlation of light and atom. Firstly, we briefly review the development of metrology. Then, we introduce our own researches in recent years, including quantum-correlation SU(1,1) optical interferometer based on four wave mixing process in atomic vapor and the atom-light hybrid interferometer based on Raman scattering in atomic vapor.#br#Interferometer is a powerful tool to measure physical quantities sensitive to the inference wave with high precision, and has been widely used in scientific research, industry test, navigation and guidance system. For example, the laser interferometer is able to measure optical phase sensitive quantities, including length, angular velocity, gravitational wave and so on. Meanwhile, the atom interferometer is sensitive to the change of atomic phase caused by the light, gravity, electric and magnetic fields. As a new type of interferometry, the atom-light hybrid interferometer, is sensitive to both the optical phase and atomic phase. Furthermore, SU(1,1) interferometer and nonlinear atom-light hybrid interferometer have the ability to beat the standard quantum limit of phase sensitivity. Quantum interference technology, whose phase measurement accuracy can break through the limit of standard quantum limit, is the core of quantum metrology and quantum measurement technology.
      Corresponding author: Yuan Chun-Hua, chyuan@phy.ecnu.edu.cn;lqchen@phy.ecnu.edu.cn ; Chen Li-Qing, chyuan@phy.ecnu.edu.cn;lqchen@phy.ecnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 91536114, 11474095, 11654005, 11604069, 11574086)), National Key Research and Development Program of China (Grant No. 2016YFA0302001), and the National Science Foundation of Shanghai, China (Grant 17ZR1442800).
    [1]

    Simon D S, Jaeger G, Sergienko A V 2017 Quantum Metrology, Imaging, and Communication (Cham: Springer) p91

    [2]

    Fixler J B, Foster G T, McGuirk J M, Kasevich M A 2007 Science 315 74

    [3]

    Peters A, Chung K Y, Chu S 2001 Metrologia 38 25

    [4]

    Ramos B L, Nagy G, Choquette S J 2000 Electroanalysis 12 140

    [5]

    Mkrauss L, Dodelson S, Meyer S 2010 Science 328 989

    [6]

    Hariharan P 1990 Rep. Prog. Phys. 54 339

    [7]

    The LIGO Scientific Collaboration, The Virgo Collaboration 2016 Phys. Rev. Lett. 116 061102

    [8]

    The LIGO Scientific Collaboration, The Virgo Collaboration 2017 Phys. Rev. Lett. 119 161101

    [9]

    Marton L, Simpson J A, Suddeth J A 1953 Phys. Rev. 90 490

    [10]

    Möllenstedt G, Dker H 1955 Naturwissenschaften 42 41

    [11]

    Rauch H, Treimer W, Bonse U 1974 Phys. Lett. 47 A369

    [12]

    Cronin A D, Schmiedmayer J, Pritchard D E 2009 Rev. Mod. Phys. 81 1051

    [13]

    Caves C M 1981 Phys. Rev. D 23 1693

    [14]

    Xiao M, Wu L A, Kimble H J 1987 Phys. Rev. Lett. 59 278

    [15]

    Grangier P, Slusher R E, Yurke B, LaPorta A 1987 Phys. Rev. Lett. 59 2153

    [16]

    The LIGO Scientific Collaboration 2013 Nat. Photon. 7 613

    [17]

    Ma Y Q, Miao H X, Pang B H, Evans M, Zhao C, Harms J, Schnabel R, Chen Y B 2017 Nat. Phys. 13 776

    [18]

    Boto A N, Kok P, Abrams D S, Braunstein S L, Williams C P, Dowling J P 2000 Phys. Rev. Lett. 85 2733

    [19]

    Nagata T, Okamoto R, O’Brien J L, Sasaki K, Takeuchi S 2007 Science 316 726

    [20]

    Yurke B, McCall S L, Klauder J R 1986 Phys. Rev. A 33 4033

    [21]

    Hudelist F, Kong J, Liu C J, Jing J T, Ou Z Y, Zhang W P 2014 Nat. Commun. 5 3049

    [22]

    Gross C, Zibold T, Nicklas E, Estéve J, Oberthaler M K 2010 Nature 464 1165

    [23]

    Ou Z Y 2012 Phys. Rev. A 85 023815

    [24]

    Bollinger J J, Itano W M, Wineland D J, Heinzen D J 1996 Phys. Rev. A 54 4649

    [25]

    Gerry C C 2000 Phys. Rev. A 61 043811

    [26]

    Li D, Gard B T, Gao Y, Yuan C H, Zhang W P, Lee H, Dowling J P 2016 Phys. Rev. A 94 063840

    [27]

    Levenson M D, Shelby R M, Reid M, Walls D F 1986 Phys. Rev. Lett. 57 2473

    [28]

    Qiu C, Chen S Y, Guo J X, Chen L Q, Chen B, Ou Z Y, Zhang W P 2016 Optica 3 775

    [29]

    Chen B, Qiu C, Chen S Y, Guo J X, Chen L Q 2015 Phys. Rev. Lett. 115 043602

    [30]

    Raman C V 1928 Indian J. Phys. 2 387

    [31]

    Begley R F, Harvey A B, Byer R L 1974 Appl. Phys. Lett. 25 387

    [32]

    Chen L Q, Zhang G W, Bian C L, Yuan C H, Ou Z Y, Zhang W P 2010 Phys. Rev. Lett. 105 133603

    [33]

    Michelson A A, Morley E W 1887 Am. J. Sci. 34 333

    [34]

    Clerk A A, Devoret M H, Girvin S M, Marquardt F, Schoelkopf R J 2010 Rev. Mod. Phys. 82 1155

    [35]

    Yuen H P, Chan W S 1983 Opt. Lett. 8 177

    [36]

    Rafal D D, Jarzyna M, Kolodynśki J 2015 Prog. Opt. 60 345

    [37]

    Kimble H J, Levin Y, Matsko A B, Thorne K S, Vyatchanin S P 2001 Phys. Rev. D 65 022002

    [38]

    Carnal O, Mlynek J 1991 Phys. Rev. Lett. 66 2689

    [39]

    Keith D W, Ekstrom C R, Turchette Q A, Pritchard D E 1991 Phys. Rev. Lett. 66 2693

    [40]

    Riehle F, Kisters T, Witte A, Helmcke J, Borde C J 1991 Phys. Rev. Lett. 67 177

    [41]

    Gustavson T L, Bouyer P, Kasevich M A 1997 Phys. Rev. Lett. 78 2046

    [42]

    Peters A, Chung K Y, Young B, Hensley J, Chu S 1997 Phil. Trans. R. Soc. Lond. A 355 2223

    [43]

    Du W, Jia J, Chen J F, Ou Z Y, Zhang W P 2018 Opt. Lett. 43 1051

    [44]

    Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413

    [45]

    Ma H M, Li D, Yuan C H, Chen L Q, Ou Z Y, Zhang W P 2015 Phys. Rev. A 92 023847

    [46]

    Chen Z D, Yuan C H, Ma H M, Li D, Chen L Q, Ou Z Y, Zhang W P 2016 Opt. Express 24 17766

  • [1]

    Simon D S, Jaeger G, Sergienko A V 2017 Quantum Metrology, Imaging, and Communication (Cham: Springer) p91

    [2]

    Fixler J B, Foster G T, McGuirk J M, Kasevich M A 2007 Science 315 74

    [3]

    Peters A, Chung K Y, Chu S 2001 Metrologia 38 25

    [4]

    Ramos B L, Nagy G, Choquette S J 2000 Electroanalysis 12 140

    [5]

    Mkrauss L, Dodelson S, Meyer S 2010 Science 328 989

    [6]

    Hariharan P 1990 Rep. Prog. Phys. 54 339

    [7]

    The LIGO Scientific Collaboration, The Virgo Collaboration 2016 Phys. Rev. Lett. 116 061102

    [8]

    The LIGO Scientific Collaboration, The Virgo Collaboration 2017 Phys. Rev. Lett. 119 161101

    [9]

    Marton L, Simpson J A, Suddeth J A 1953 Phys. Rev. 90 490

    [10]

    Möllenstedt G, Dker H 1955 Naturwissenschaften 42 41

    [11]

    Rauch H, Treimer W, Bonse U 1974 Phys. Lett. 47 A369

    [12]

    Cronin A D, Schmiedmayer J, Pritchard D E 2009 Rev. Mod. Phys. 81 1051

    [13]

    Caves C M 1981 Phys. Rev. D 23 1693

    [14]

    Xiao M, Wu L A, Kimble H J 1987 Phys. Rev. Lett. 59 278

    [15]

    Grangier P, Slusher R E, Yurke B, LaPorta A 1987 Phys. Rev. Lett. 59 2153

    [16]

    The LIGO Scientific Collaboration 2013 Nat. Photon. 7 613

    [17]

    Ma Y Q, Miao H X, Pang B H, Evans M, Zhao C, Harms J, Schnabel R, Chen Y B 2017 Nat. Phys. 13 776

    [18]

    Boto A N, Kok P, Abrams D S, Braunstein S L, Williams C P, Dowling J P 2000 Phys. Rev. Lett. 85 2733

    [19]

    Nagata T, Okamoto R, O’Brien J L, Sasaki K, Takeuchi S 2007 Science 316 726

    [20]

    Yurke B, McCall S L, Klauder J R 1986 Phys. Rev. A 33 4033

    [21]

    Hudelist F, Kong J, Liu C J, Jing J T, Ou Z Y, Zhang W P 2014 Nat. Commun. 5 3049

    [22]

    Gross C, Zibold T, Nicklas E, Estéve J, Oberthaler M K 2010 Nature 464 1165

    [23]

    Ou Z Y 2012 Phys. Rev. A 85 023815

    [24]

    Bollinger J J, Itano W M, Wineland D J, Heinzen D J 1996 Phys. Rev. A 54 4649

    [25]

    Gerry C C 2000 Phys. Rev. A 61 043811

    [26]

    Li D, Gard B T, Gao Y, Yuan C H, Zhang W P, Lee H, Dowling J P 2016 Phys. Rev. A 94 063840

    [27]

    Levenson M D, Shelby R M, Reid M, Walls D F 1986 Phys. Rev. Lett. 57 2473

    [28]

    Qiu C, Chen S Y, Guo J X, Chen L Q, Chen B, Ou Z Y, Zhang W P 2016 Optica 3 775

    [29]

    Chen B, Qiu C, Chen S Y, Guo J X, Chen L Q 2015 Phys. Rev. Lett. 115 043602

    [30]

    Raman C V 1928 Indian J. Phys. 2 387

    [31]

    Begley R F, Harvey A B, Byer R L 1974 Appl. Phys. Lett. 25 387

    [32]

    Chen L Q, Zhang G W, Bian C L, Yuan C H, Ou Z Y, Zhang W P 2010 Phys. Rev. Lett. 105 133603

    [33]

    Michelson A A, Morley E W 1887 Am. J. Sci. 34 333

    [34]

    Clerk A A, Devoret M H, Girvin S M, Marquardt F, Schoelkopf R J 2010 Rev. Mod. Phys. 82 1155

    [35]

    Yuen H P, Chan W S 1983 Opt. Lett. 8 177

    [36]

    Rafal D D, Jarzyna M, Kolodynśki J 2015 Prog. Opt. 60 345

    [37]

    Kimble H J, Levin Y, Matsko A B, Thorne K S, Vyatchanin S P 2001 Phys. Rev. D 65 022002

    [38]

    Carnal O, Mlynek J 1991 Phys. Rev. Lett. 66 2689

    [39]

    Keith D W, Ekstrom C R, Turchette Q A, Pritchard D E 1991 Phys. Rev. Lett. 66 2693

    [40]

    Riehle F, Kisters T, Witte A, Helmcke J, Borde C J 1991 Phys. Rev. Lett. 67 177

    [41]

    Gustavson T L, Bouyer P, Kasevich M A 1997 Phys. Rev. Lett. 78 2046

    [42]

    Peters A, Chung K Y, Young B, Hensley J, Chu S 1997 Phil. Trans. R. Soc. Lond. A 355 2223

    [43]

    Du W, Jia J, Chen J F, Ou Z Y, Zhang W P 2018 Opt. Lett. 43 1051

    [44]

    Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413

    [45]

    Ma H M, Li D, Yuan C H, Chen L Q, Ou Z Y, Zhang W P 2015 Phys. Rev. A 92 023847

    [46]

    Chen Z D, Yuan C H, Ma H M, Li D, Chen L Q, Ou Z Y, Zhang W P 2016 Opt. Express 24 17766

  • [1] Sun Si-Tong, Ding Ying-Xing, Liu Wu-Ming. Research progress in quantum precision measurements based on linear and nonlinear interferometers. Acta Physica Sinica, 2022, 71(13): 130701. doi: 10.7498/aps.71.20220425
    [2] Xu Da, Zhong Qing, Cao Wen-Hui, Wang Xue-Shen, Wang Shi-Jian, Li Jin-Jin, Liu Jian-She, Chen Wei. A second-order gradiometric superconducting quantum interference device current sensor with cross-coupled structure. Acta Physica Sinica, 2021, 70(12): 128501. doi: 10.7498/aps.70.20201816
    [3] Sun Chen, Feng Yu-Tao, Fu Di, Zhang Ya-Fei, Li Juan, Liu Xue-Bin. A propagation of interferogram signal-to-noise (SNR) and phase uncertainty in Doppler asymmetric spatial heterodyne spectrometer. Acta Physica Sinica, 2020, 69(1): 014202. doi: 10.7498/aps.69.20191179
    [4] Sun Teng-Fei, Lu Peng, Zhuo Zhuang, Zhang Wen-Hao, Lu Jing-Qi. Dual-channel quantitative phase microscopy based on a single cube beamsplitter interferometer. Acta Physica Sinica, 2018, 67(14): 140704. doi: 10.7498/aps.67.20172722
    [5] Wang Jin, Zhan Ming-Sheng. Test of weak equivalence principle of microscopic particles based on atom interferometers. Acta Physica Sinica, 2018, 67(16): 160402. doi: 10.7498/aps.67.20180621
    [6] Zuo Xiao-Jie, Sun Ying-Rong, Yan Zhi-Hui, Jia Xiao-Jun. High sensitivity quantum Michelson interferometer. Acta Physica Sinica, 2018, 67(13): 134202. doi: 10.7498/aps.67.20172563
    [7] Li Shi-Yu,  Tian Jian-Feng,  Yang Chen,  Zuo Guan-Hua,  Zhang Yu-Chi,  Zhang Tian-Cai. Effect of detection efficiency on phase sensitivity in quantum-enhanced Mach-Zehnder interferometer. Acta Physica Sinica, 2018, 67(23): 234202. doi: 10.7498/aps.67.20181193
    [8] Lan Bin, Feng Guo-Ying, Zhang Tao, Liang Jing-Chuan, Zhou Shou-Huan. A single-element interferometer for measuring parallelism and uniformity of transparent plate. Acta Physica Sinica, 2017, 66(6): 069501. doi: 10.7498/aps.66.069501
    [9] Wang Jian-Bo, Qian Jin, Liu Zhong-You, Lu Zu-Liang, Huang Lu, Yang Yan, Yin Cong, Li Tong-Bao. Methode of phase correction of displacement measurement using Fabry-Perot interferometer in calculable capacitor. Acta Physica Sinica, 2016, 65(11): 110601. doi: 10.7498/aps.65.110601
    [10] Yang Wei, Sun Da-Li, Zhou Lin, Wang Jin, Zhan Ming-Sheng. Zeeman slowing and magneto-optically trapping of lithium atoms in atomic interferometry experiments. Acta Physica Sinica, 2014, 63(15): 153701. doi: 10.7498/aps.63.153701
    [11] Li Nan, Huang Kai-Kai, Lu Xuan-Hui. Study on the sensitivity of laser-pumped cesium atomic magnetometer. Acta Physica Sinica, 2013, 62(13): 133201. doi: 10.7498/aps.62.133201
    [12] Yang Shen, Rong Qiang-Zhou, Sun Hao, Zhang Jing, Liang Lei, Xu Qin-Fang, Zhan Su-Chang, Du Yan-Ying, Feng Ding-Yi, Qiao Xue-Guang, Hu Man-Li. High temperature probe sensor with high sensitivity based on Michelson interferometer. Acta Physica Sinica, 2013, 62(8): 084218. doi: 10.7498/aps.62.084218
    [13] Lu Dan-Feng, Qi Zhi-Mei. Characterization and chemical/biosensing application of a high-sensitivity integrated optical polarimetric interferometer. Acta Physica Sinica, 2012, 61(11): 114212. doi: 10.7498/aps.61.114212
    [14] Cai Yuan-Xue, Zhang Yun-Dong, Dang Bo-Shi, Wu Hao, Wang Jin-Fang, Yuan Ping. High sensitivity slow light interferometer based on dispersiveproperty of Ⅲ-Ⅴ and Ⅱ-Ⅵ semiconductor materials. Acta Physica Sinica, 2011, 60(4): 040701. doi: 10.7498/aps.60.040701
    [15] Hou Jian-Ping, Ning Tao, Gai Shuang-Long, Li Peng, Hao Jian-Ping, Zhao Jian-Lin. Sensitivity analysis of refractive index measurement based on intermodal interference in photonic crystal fiber. Acta Physica Sinica, 2010, 59(7): 4732-4737. doi: 10.7498/aps.59.4732
    [16] Li Shu-Guang, Zhou Xiang, Cao Xiao-Chao, Sheng Ji-Teng, Xu Yun-Fei, Wang Zhao-Ying, Lin Qiang. All-optical high sensitive atomic magnetometer. Acta Physica Sinica, 2010, 59(2): 877-882. doi: 10.7498/aps.59.877
    [17] Ren Li-Chun, Zhou Lin, Li Run-Bing, Liu Min, Wang Jin, Zhan Ming-Sheng. Dependence of sensitivity of atom interferometer gravimeters on the Raman laser pulse sequences. Acta Physica Sinica, 2009, 58(12): 8230-8235. doi: 10.7498/aps.58.8230
    [18] Zhu Chang-Xing, Feng Yan-Ying, Ye Xiong-Ying, Zhou Zhao-Ying, Zhou Yong-Jia, Xue Hong-Bo. The absolute rotation measurement of atom interferometer by phase modulation. Acta Physica Sinica, 2008, 57(2): 808-815. doi: 10.7498/aps.57.808
    [19] XU XIN-YE, WANG YU-ZHU. THEORETICAL ANALYSES OF A DOPPLER TYPE ATOMIC INTERFEROMETER. Acta Physica Sinica, 1997, 46(6): 1062-1072. doi: 10.7498/aps.46.1062
    [20] T. F. HU, C. WEI, C. S. CHANG. GE IR INTERFEREMETER. Acta Physica Sinica, 1964, 20(11): 1164-1171. doi: 10.7498/aps.20.1164
Metrics
  • Abstract views:  7543
  • PDF Downloads:  385
  • Cited By: 0
Publishing process
  • Received Date:  05 May 2018
  • Accepted Date:  15 July 2018
  • Published Online:  20 August 2019

/

返回文章
返回
Baidu
map