Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Stability switching behavior of thermoacoustic oscillation in Rijke tube

Dang Nan-Nan Zhang Zheng-Yuan Zhang Jia-Zhong

Citation:

Stability switching behavior of thermoacoustic oscillation in Rijke tube

Dang Nan-Nan, Zhang Zheng-Yuan, Zhang Jia-Zhong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Large-amplitude self-excited thermoacoustic oscillations arising due to the interaction between unsteady heat release and acoustic pressure fluctuations have been encountered in many thermal devices. These oscillations may lead to unwanted structural vibrations and efficiency reduction while emitting loud noises, and thus the predicting of such oscillations is very important. Physically, oscillation is a kind of instability, so stability analysis can be applied to understanding such a phenomenon. The present work focuses on the role of time delay between unsteady heat release and flow perturbation in the stability of thermoacoustic system. To this end, one-dimensional Rijke tube model with both open ends is numerically investigated. In the Rijke tube model, an electric heater is located at the first quarter of the Rijke tube and its unsteady heat release rate is modeled by an empirical model proposed by Heckl. Non-dimensional momentum equation and energy equation of the acoustic perturbation are derived and solved in time domain by using the Galerkin technique. The time evolution of the thermoacoustic oscillations with continuous increase in the time delay is calculated in two different acoustic damping cases, namely the heavily damped case and the weakly damped case, while other parameters are fixed. It is found that in both the heavily damped case and the weakly damped case, the system stability switches between stability and instability as the time delay increases, which is called stability switching and is a typical nonlinear phenomenon in a delay-dependent system. However, compared with in the heavily damped case, in the weakly damped case, the stability region is enlarged and the amplitude of the limit cycle oscillation is increased. Besides, in the weakly damped system, the dominating mode of system shifts in the first three modes instead of keeping in the first mode during increasing the time delay, which suggests that for the weakly damped system, the higher modes cannot be neglected and the system cannot be analyzed with a single-mode model either. Further, the bifurcation plots for the variation of the time delay for these two cases show that the system stability changes with time delay for a period of two, which is equal to the period of the first acoustic mode. As a conclusion, the results of present work indicate that the time delay between unsteady heat release and flow perturbations plays a critical role in generating thermoacoustic oscillations, and the findings of stability switching can help to understand the nonlinear phenomena in thermoacoustic systems.
      Corresponding author: Zhang Jia-Zhong, jzzhang@mail.xjtu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2012CB026002), the National Natural Science Foundation of China (Grant No. 51775437), and the Program on Key Research Project of Shanxi Province, China (Grant No. 2017ZDCXL-GY-02-02).
    [1]

    Huang X, Hu Z J, Li Q, Li Z Y 2010 Cryogenics 1 5 (in Chinese) [黄鑫, 胡忠军, 李青, 李正宇 2010 低温工程 1 5]

    [2]

    Heckl M A 1990 Acustica 72 63

    [3]

    Han F, Sha J Z 1996 Acta Acustica 21 362 (in Chinese) [韩飞, 沙家正 1996 声学学报 21 362]

    [4]

    Han F, Yue G S, Sha J Z 1997 Acta Acustica 22 249 (in Chinese) [韩飞, 岳国森, 沙家正 1997 声学学报 22 249]

    [5]

    Matveev K I 2003 Ph. D. Dissertation (California: Cali- fornia Institute of Technology)

    [6]

    Balasubramanian K, Sujith R I 2008 Phys. Fluids 20 044103

    [7]

    Subramanian P, Mariappan S, Sujith R I, Wahi P 2010 Int. J. Spray Combust. Dyn. 2 325

    [8]

    Ma D Y 2004 Fundamental Theory of Modern Acoustic 1 (Beijing: Science Press) pp321-363 (in Chinese) [马大猷 2004现代声学理论基础 1 (北京: 科学出版社) 第321363页]

    [9]

    Yoon H G, Peddieson J, Purdy K R 2001 Int. J. Eng. Sci. 39 1707

    [10]

    Li G N, Zhou H, Li S Y 2008 J. Eng. Therm. 29 879 (in Chinese) [李国能, 周昊, 李时宇 2008 工程热 29 879]

    [11]

    Sayadi T, Chenadec V L, Schmid P J, Richecoeur F, Massot M 2014 J. Fluid Mech. 753 448

    [12]

    Kashinath K, Waugh I C, Juniper M P 2014 J. Fluid Mech. 761 399

    [13]

    Li X Y, Huang Y, Zhao D, Yang W M, Yang X L, Wen H B 2017 Appl. Energy 199 217

    [14]

    Fleifil M, Annaswamy A M, Ghoneim Z A, Ghomien A F 1996 Combust. Flame 106 487

    [15]

    Howe M S 1998 Acoustics of Fluid-Structure Interactions (Cambridge: Cambridge University Press) pp469-472

    [16]

    Subramanian P, Sujith R I, Wahi P 2013 J. Fluid Mech. 715 210

    [17]

    Juniper M P 2011 J. Fluid Mech. 667 272

    [18]

    Lighthill M J 1954 Proc. R. Soc. Lond. A 224 1

    [19]

    Selimefendigil F, ztopb H F 2014 Euro. J. Mech. B: Fluids 48 135

    [20]

    Sui J X, Zhao D, Zhang B, Gao N 2017 Exp. Therm. Fluid Sci. 81 336

    [21]

    Feng J C, Ao W, Liu P J 2017 J. Eng. Therm. 38 2261 (in Chinese) [冯建畅, 熬文, 刘佩进 2017 工程热 38 2261]

  • [1]

    Huang X, Hu Z J, Li Q, Li Z Y 2010 Cryogenics 1 5 (in Chinese) [黄鑫, 胡忠军, 李青, 李正宇 2010 低温工程 1 5]

    [2]

    Heckl M A 1990 Acustica 72 63

    [3]

    Han F, Sha J Z 1996 Acta Acustica 21 362 (in Chinese) [韩飞, 沙家正 1996 声学学报 21 362]

    [4]

    Han F, Yue G S, Sha J Z 1997 Acta Acustica 22 249 (in Chinese) [韩飞, 岳国森, 沙家正 1997 声学学报 22 249]

    [5]

    Matveev K I 2003 Ph. D. Dissertation (California: Cali- fornia Institute of Technology)

    [6]

    Balasubramanian K, Sujith R I 2008 Phys. Fluids 20 044103

    [7]

    Subramanian P, Mariappan S, Sujith R I, Wahi P 2010 Int. J. Spray Combust. Dyn. 2 325

    [8]

    Ma D Y 2004 Fundamental Theory of Modern Acoustic 1 (Beijing: Science Press) pp321-363 (in Chinese) [马大猷 2004现代声学理论基础 1 (北京: 科学出版社) 第321363页]

    [9]

    Yoon H G, Peddieson J, Purdy K R 2001 Int. J. Eng. Sci. 39 1707

    [10]

    Li G N, Zhou H, Li S Y 2008 J. Eng. Therm. 29 879 (in Chinese) [李国能, 周昊, 李时宇 2008 工程热 29 879]

    [11]

    Sayadi T, Chenadec V L, Schmid P J, Richecoeur F, Massot M 2014 J. Fluid Mech. 753 448

    [12]

    Kashinath K, Waugh I C, Juniper M P 2014 J. Fluid Mech. 761 399

    [13]

    Li X Y, Huang Y, Zhao D, Yang W M, Yang X L, Wen H B 2017 Appl. Energy 199 217

    [14]

    Fleifil M, Annaswamy A M, Ghoneim Z A, Ghomien A F 1996 Combust. Flame 106 487

    [15]

    Howe M S 1998 Acoustics of Fluid-Structure Interactions (Cambridge: Cambridge University Press) pp469-472

    [16]

    Subramanian P, Sujith R I, Wahi P 2013 J. Fluid Mech. 715 210

    [17]

    Juniper M P 2011 J. Fluid Mech. 667 272

    [18]

    Lighthill M J 1954 Proc. R. Soc. Lond. A 224 1

    [19]

    Selimefendigil F, ztopb H F 2014 Euro. J. Mech. B: Fluids 48 135

    [20]

    Sui J X, Zhao D, Zhang B, Gao N 2017 Exp. Therm. Fluid Sci. 81 336

    [21]

    Feng J C, Ao W, Liu P J 2017 J. Eng. Therm. 38 2261 (in Chinese) [冯建畅, 熬文, 刘佩进 2017 工程热 38 2261]

  • [1] Liu Zi-Yi, Chu Fu-Qiang, Wei Jun-Jun, Feng Yan-Hui. Interface thermal conductance and phonon thermal transport characteristics of diamond/carbon nanotube interface. Acta Physica Sinica, 2024, 73(13): 138102. doi: 10.7498/aps.73.20240323
    [2] Wang Wei, Deguchi Yoshihiro, He Yong-Sen, Zhang Jia-Zhong. Similarity and vortex-acoustic lock-on behavior in thermoacoustic oscillation involving vortex shedding. Acta Physica Sinica, 2019, 68(23): 234303. doi: 10.7498/aps.68.20190663
    [3] Wang Tuo, Wu Feng, Li Duan-Yong, Chen Hao, Lin Jie. Self-excited oscillation mechanism of a standing-wave thermoacoustic system. Acta Physica Sinica, 2015, 64(4): 044301. doi: 10.7498/aps.64.044301
    [4] Zhang Yao-Li, Wu Bao-Wei, Wang Yue-E, Han Xiao-Xia. Finite-time stability for switched singular systems. Acta Physica Sinica, 2014, 63(17): 170205. doi: 10.7498/aps.63.170205
    [5] Ma Xin-Dong, Bi Qin-Sheng. Complicated behaviors as well as the mechanism of the switching circuit. Acta Physica Sinica, 2012, 61(24): 240506. doi: 10.7498/aps.61.240506
    [6] Yu Yue, Zhang Chun, Han Xiu-Jing, Bi Qin-Sheng. Oscillations and their mechanism of compound system with periodic switches between two subsystems. Acta Physica Sinica, 2012, 61(20): 200507. doi: 10.7498/aps.61.200507
    [7] Wu Tian-Yi, Zhang Zheng-Di, Bi Qin-Sheng. The oscillations of a switching electrical circuit and the mechanism of non-smooth bifurcations. Acta Physica Sinica, 2012, 61(7): 070502. doi: 10.7498/aps.61.070502
    [8] Gao Zai-Rui, Shen Yan-Xia, Ji Zhi-Cheng. Uniform finite-time stability of discrete-time switched descriptor systems. Acta Physica Sinica, 2012, 61(12): 120203. doi: 10.7498/aps.61.120203
    [9] Sun Yue, Dai Xin, Wang Zhi-Hui, Su Yu-Gang, Hu Ai-Guo, Tang Chun-Sen. Analysis of multiple resonant operating points and their autonomous oscillation stabilities in inductive power transfer systems. Acta Physica Sinica, 2011, 60(4): 048401. doi: 10.7498/aps.60.048401
    [10] Liu Yang-Zheng, Lin Chang-Sheng, Li Xin-Chao. Family of switched unified chaotic system. Acta Physica Sinica, 2011, 60(4): 040505. doi: 10.7498/aps.60.040505
    [11] Meng Li-Jun, Xiao Hua-Ping, Tang Chao, Zhang Kai-Wang, Zhong Jian-Xin. Formation and thermal stability of compound stucture of carbon nanotube and silicon nanowire. Acta Physica Sinica, 2009, 58(11): 7781-7786. doi: 10.7498/aps.58.7781
    [12] Zhu Ya-Bo, Bao Zhen, Cai Cun-Jin, Yang Yu-Jie. Study on the thermal stability of carbon nanotubes by simulation. Acta Physica Sinica, 2009, 58(11): 7833-7837. doi: 10.7498/aps.58.7833
    [13] Cao Shi-Ying, Zhang Zhi-Gang, Chai Lu, Wang Qing-Yue. Improving the stability of the Ti: sapphire oscillator. Acta Physica Sinica, 2008, 57(5): 2971-2975. doi: 10.7498/aps.57.2971
    [14] Ouyang Yu, Peng Jing-Cui, Wang Hui, Yi Shuang-Ping. Study on the stability of carbon nanotubes. Acta Physica Sinica, 2008, 57(1): 615-620. doi: 10.7498/aps.57.615
    [15] Xia Ming-Xia, Yan Ning, Li Hong-Xing, Ning Nai-Dong, Lin Xi-Wei, Xie Zhong. Study of structure stability and decoration of carbon nanotube under applied electric field. Acta Physica Sinica, 2007, 56(1): 113-116. doi: 10.7498/aps.56.113
    [16] Liu Yang-Zheng, Jiang Chang-Sheng, Lin Chang-Sheng, Sun Han. Four-dimensional switchable hyperchaotic system. Acta Physica Sinica, 2007, 56(9): 5131-5135. doi: 10.7498/aps.56.5131
    [17] Liu Yang-Zheng, Jiang Chang-Sheng, Lin Chang-Sheng, Xiong Xing, Shi Lei. A class of switchable 3D chaotic systems. Acta Physica Sinica, 2007, 56(6): 3107-3112. doi: 10.7498/aps.56.3107
    [18] Li Juan, Wu Chun-Ya, Zhao Shu-Yun, Liu Jian-Ping, Meng Zhi-Guo, Xiong Shao-Zhen, Zhang Fang. Investigation on stability of microcrystalline silicon thin film transistors. Acta Physica Sinica, 2006, 55(12): 6612-6616. doi: 10.7498/aps.55.6612
    [19] Wang Shi-Yu, Guo Zhen, Fu Jun-Mei, Cai De-Fang, Wen Jian-Guo, Xue Hai-Zhong, Tang Ying-De. Heat-induced undulation in the distribution of diode-pumped solid-state laser. Acta Physica Sinica, 2003, 52(2): 355-361. doi: 10.7498/aps.52.355
    [20] PENG-FEI HSU, PING-CHUAN FENG. STUDY OF FREQUENCY STABILITY OF ELECTRON- COUPLED OSCILLATORS. Acta Physica Sinica, 1950, 7(6): 72-80. doi: 10.7498/aps.7.72-2
Metrics
  • Abstract views:  5976
  • PDF Downloads:  130
  • Cited By: 0
Publishing process
  • Received Date:  02 February 2018
  • Accepted Date:  14 April 2018
  • Published Online:  05 July 2018

/

返回文章
返回
Baidu
map