Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Semi-analytical research on acoustic-structure coupling calculation of partially submerged cylindrical shell

Guo Wen-Jie Li Tian-Yun Zhu Xiang Qu Kai-Yang

Citation:

Semi-analytical research on acoustic-structure coupling calculation of partially submerged cylindrical shell

Guo Wen-Jie, Li Tian-Yun, Zhu Xiang, Qu Kai-Yang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Vibroacoustic analysis of a partially submerged cylindrical shell-liquid coupling system is a typical acoustic-structure interaction problem in an acoustic half-space. Generally, the vibration and acoustic solutions of this problem almost depend on numerical method in previous studies. However, whether from the aspect of verifying the numerical methods or from the aspect of revealing the vibroacoustic mechanism of the acoustic-structure interaction system, the development of an analytical or semi-analytical method is indispensable. In this study, a semi-analytical method is proposed to address the vibroacoustic response of a horizontal cylindrical shell partially immersed in water The acoustic coordinate system is established on the free surface, and the sine series function is introduced to express the sound pressure to meet the pressure release boundary condition on the free surface automatically. Then based on the two-dimensional Flgge shell theory, the motion equation of the shell-liquid coupling system is established with using the center of the shell as the origin of the coordinate system. By using the Galerkin method, the velocity continuous condition on the fluid-structure interface is established. Then the relation matrix between the acoustic pressure amplitude and the shell displacement amplitude is derived after converting the sound pressure from different coordinate systems into that in the same coordinate system by using the geometry relationship of two coordinate systems. Then the vibration and sound radiation of this coupling system are predicted by solving the coupled matrix equations, and the coupled free vibration can also be addressed by solving the characteristic equation after setting the determinant of the coefficient matrix to be zero. To verify the accuracy and reliability of the present method, the coupled natural frequencies, the vibration response and the distribution of the sound pressure obtained from the present method are compared with those obtained from the finite element method, showing that they are in good agreement with each other. Then the shapes of the first four order modes for the coupled system are presented and compared with those of the system submerged in unbounded fluid field, and the couple between different modes, and the couple between the symmetric and antisymmetric modes are observed due to the effect of the free surface. The characteristics of the root mean square velocity of the shell with different immersed depths are discussed, which reveals that the peaks of response curves shift to the lower frequencies with increasing immersed depth. The characteristics of far field sound pressure directivity are presented and explained by the image method in detail. This study provides a novel method to analytically predict the vibroacoustic response of an elastic structure partially coupling with the fluid field when bounded in a sound half space.
      Corresponding author: Li Tian-Yun, ltyz801@hust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51579109, 51479079, 51379083) and the Fundamental Research Funds for the Central Universities of China (Grant No. 2016YXZD010).
    [1]

    Williams W, Parke N G, Moran D A, Sherman C H 1964 J. Acount. Soc. Am. 36 2316

    [2]

    Harari A, Sandman B E 1976 J. Acoust. Soc. Am. 60 117

    [3]

    Fuller C R 1988 J. Sound Vib. 122 479

    [4]

    Pan A, Fan J, Wang B, Chen Z G, Zheng G Y 2014 Acta Phys. Sin. 63 214301 (in Chinese)[潘安, 范军, 王斌, 陈志刚, 郑国垠 2014 63 214301]

    [5]

    Liu P, Liu S W, Li S 2013 Ship Sci. Technol. 36 36 (in Chinese)[刘佩, 刘书文, 黎胜 2013 舰船科学技术 36 36]

    [6]

    Huang H 1981 Wave Motion 3 269

    [7]

    Hasheminejad S M, Azarpeyvand M 2005 J. Appl. Math. Mech. 85 66

    [8]

    Bai Z G, Wu W W, Zuo C K, Zhang F, Xiong C X 2014 J. Ship Mech. 18 178 (in Chinese)[白振国, 吴文伟, 左成魁, 张峰, 熊晨熙 2014 船舶力学 18 178]

    [9]

    Guo W J, Li T Y, Zhu X, Miao Y Y, Zhang G J 2017 J. Sound Vib. 393 338

    [10]

    Guo W J, Li T Y, Zhu X, Zhang S 2017 Chin. J. Ship Res. 12 62 (in Chinese)[郭文杰, 李天匀, 朱翔, 张帅 2017 中国舰船研究 12 62]

    [11]

    Amabili M 1996 J. Sound Vib. 191 757

    [12]

    Amabili M 1997 J. Vib. Acoust. 119 476

    [13]

    Ye W B, Li T Y, Zhu X 2012 Appl. Mech. Mater. 170 2303

    [14]

    Selmane A, Lakis A A 1997 J. Sound Vib. 5 111

    [15]

    Ergin A, Temarel P 2002 J. Sound Vib. 254 951

    [16]

    Krishna B V, Ganesan N 2006 J. Sound Vib. 291 1221

    [17]

    Hidalgo J A, Gama A L, Moreire R M 2017 J. Sound Vib. 408 31

    [18]

    Escaler X, Torre O D, Goggins J 2017 J. Fluid Struct. 69 252

    [19]

    Li T Y, Wang P, Zhu X, Yang J, Ye W B 2017 J. Vib. Acoust. 139 041002

    [20]

    Li H L, Wu C J, Huang X Q 2003 Appl. Acoust. 64 495

    [21]

    Li T Y, Wang L, Guo W J, Yang G D, Zhu Xiang 2016 Chin. J. Ship Res. 11 106 (in Chinese)[李天匀, 王露, 郭文杰, 杨国栋, 朱翔 2016 中国舰船研究 11 106]

    [22]

    Zhu X, Ye W B, Li T Y, Chen C 2013 Ocean Eng. 58 22

  • [1]

    Williams W, Parke N G, Moran D A, Sherman C H 1964 J. Acount. Soc. Am. 36 2316

    [2]

    Harari A, Sandman B E 1976 J. Acoust. Soc. Am. 60 117

    [3]

    Fuller C R 1988 J. Sound Vib. 122 479

    [4]

    Pan A, Fan J, Wang B, Chen Z G, Zheng G Y 2014 Acta Phys. Sin. 63 214301 (in Chinese)[潘安, 范军, 王斌, 陈志刚, 郑国垠 2014 63 214301]

    [5]

    Liu P, Liu S W, Li S 2013 Ship Sci. Technol. 36 36 (in Chinese)[刘佩, 刘书文, 黎胜 2013 舰船科学技术 36 36]

    [6]

    Huang H 1981 Wave Motion 3 269

    [7]

    Hasheminejad S M, Azarpeyvand M 2005 J. Appl. Math. Mech. 85 66

    [8]

    Bai Z G, Wu W W, Zuo C K, Zhang F, Xiong C X 2014 J. Ship Mech. 18 178 (in Chinese)[白振国, 吴文伟, 左成魁, 张峰, 熊晨熙 2014 船舶力学 18 178]

    [9]

    Guo W J, Li T Y, Zhu X, Miao Y Y, Zhang G J 2017 J. Sound Vib. 393 338

    [10]

    Guo W J, Li T Y, Zhu X, Zhang S 2017 Chin. J. Ship Res. 12 62 (in Chinese)[郭文杰, 李天匀, 朱翔, 张帅 2017 中国舰船研究 12 62]

    [11]

    Amabili M 1996 J. Sound Vib. 191 757

    [12]

    Amabili M 1997 J. Vib. Acoust. 119 476

    [13]

    Ye W B, Li T Y, Zhu X 2012 Appl. Mech. Mater. 170 2303

    [14]

    Selmane A, Lakis A A 1997 J. Sound Vib. 5 111

    [15]

    Ergin A, Temarel P 2002 J. Sound Vib. 254 951

    [16]

    Krishna B V, Ganesan N 2006 J. Sound Vib. 291 1221

    [17]

    Hidalgo J A, Gama A L, Moreire R M 2017 J. Sound Vib. 408 31

    [18]

    Escaler X, Torre O D, Goggins J 2017 J. Fluid Struct. 69 252

    [19]

    Li T Y, Wang P, Zhu X, Yang J, Ye W B 2017 J. Vib. Acoust. 139 041002

    [20]

    Li H L, Wu C J, Huang X Q 2003 Appl. Acoust. 64 495

    [21]

    Li T Y, Wang L, Guo W J, Yang G D, Zhu Xiang 2016 Chin. J. Ship Res. 11 106 (in Chinese)[李天匀, 王露, 郭文杰, 杨国栋, 朱翔 2016 中国舰船研究 11 106]

    [22]

    Zhu X, Ye W B, Li T Y, Chen C 2013 Ocean Eng. 58 22

  • [1] Li Yu-Jie, Huang Jun-Jie, Xiao Xu-Bin. Numerical study of droplet impact on the inner surface of a cylinder. Acta Physica Sinica, 2018, 67(18): 184701. doi: 10.7498/aps.67.20180364
    [2] Shang De-Jiang, Qian Zhi-Wen, He Yuan-An, Xiao Yan. Sound radiation of cylinder in shallow water investigated by combined wave superposition method. Acta Physica Sinica, 2018, 67(8): 084301. doi: 10.7498/aps.67.20171963
    [3] Yang De-Sen,  Zhang Rui,  Shi Sheng-Guo. Sound radiation from finite cylindrical shell excited by inner finite-size sources. Acta Physica Sinica, 2018, 67(24): 244301. doi: 10.7498/aps.67.20181716
    [4] Zou Shi-Ying, Xi Wei-Cheng, Peng Miao-Juan, Cheng Yu-Min. Analysis of fracture problems of airport pavement by improved element-free Galerkin method. Acta Physica Sinica, 2017, 66(12): 120204. doi: 10.7498/aps.66.120204
    [5] Lu Zhong-Lei, Wei Ying-Jie, Wang Cong, Sun Zhao. An experimental study of water-entry cavitating flows of an end-closed cylindrical shell based on the high-speed imaging technology. Acta Physica Sinica, 2016, 65(1): 014704. doi: 10.7498/aps.65.014704
    [6] Zhang Zhi-Dong, Gao Si-Min, Wang Hui, Wang Hong-Yan. Resonance mode of an equilateral triangle with triangle notch. Acta Physica Sinica, 2014, 63(12): 127301. doi: 10.7498/aps.63.127301
    [7] Pan An, Fan Jun, Wang Bin, Chen Zhi-Gang, Zheng Guo-Yin. Acoustic scattering from the finite periodically ribbed two concentric cylindrical shells. Acta Physica Sinica, 2014, 63(21): 214301. doi: 10.7498/aps.63.214301
    [8] An Bao-Lin, Lin Hong, Liu Qiang, Duan Yuan-Yuan. Viscosity measurements using a cylindrical resonator. Acta Physica Sinica, 2013, 62(17): 175101. doi: 10.7498/aps.62.175101
    [9] Ming Fu-Ren, Zhang A-Man, Yao Xiong-Liang. Static and dynamic analysis of elastic shell structures with smoothed particle method. Acta Physica Sinica, 2013, 62(11): 110203. doi: 10.7498/aps.62.110203
    [10] Pan An, Fan Jun, Zhuo Lin-Kai. Acoustic scattering from a finite quasi-periodic bulkhead cylindrical shell. Acta Physica Sinica, 2013, 62(2): 024301. doi: 10.7498/aps.62.024301
    [11] Li Shuai, Zhang A-Man, Wang Shi-Ping. Experimental and numerical studies on “crown” spike generated by a bubble near free-surface. Acta Physica Sinica, 2013, 62(19): 194703. doi: 10.7498/aps.62.194703
    [12] Ni Bao-Yu, Li Shuai, Zhang A-Man. Jet splitting after bubble breakup at the free surface. Acta Physica Sinica, 2013, 62(12): 124704. doi: 10.7498/aps.62.124704
    [13] Pan An, Fan Jun, Zhuo Lin-Kai. Acoustic scattering from a finite periodically bulkheads in cylindrical shell. Acta Physica Sinica, 2012, 61(21): 214301. doi: 10.7498/aps.61.214301
    [14] Yang Xiu-Li, Dai Bao-Dong, Li Zhen-Feng. Meshless local Petrov-Galerkin method with complex variables for elasticity. Acta Physica Sinica, 2012, 61(5): 050204. doi: 10.7498/aps.61.050204
    [15] Zheng Bao-Jing, Dai Bao-Dong. Improved meshless local Petrov-Galerkin method for two-dimensional potential problems. Acta Physica Sinica, 2010, 59(8): 5182-5189. doi: 10.7498/aps.59.5182
    [16] Naranmandula, Han Yuan-Chun. The homotopy analysis method for solving nonlinear wave propagation model in inhomogeneous cylindrical shells. Acta Physica Sinica, 2010, 59(5): 2942-2947. doi: 10.7498/aps.59.2942
    [17] Xu Sheng-Rui, Zhang Jin-Cheng, Li Zhi-Ming, Zhou Xiao-Wei, Xu Zhi-Hao, Zhao Guang-Cai, Zhu Qing-Wei, Zhang Jin-Feng, Mao Wei, Hao Yue. The triangular pits eliminate of (1120) a-plane GaN growth by metal-orgamic chemical vapor deposition. Acta Physica Sinica, 2009, 58(8): 5705-5708. doi: 10.7498/aps.58.5705
    [18] Dai Shao-Yu, Wu Zhen-Sen. Application of wavelet-Galerkin time domain method in the composite scattering of target and lossy ground. Acta Physica Sinica, 2008, 57(12): 7635-7640. doi: 10.7498/aps.57.7635
    [19] He Feng, Guo Qi-Bo, Liu Liao. Obtaining general soliton solutions of nonlinear Boussinesq equations by trigonometric function method. Acta Physica Sinica, 2007, 56(8): 4326-4330. doi: 10.7498/aps.56.4326
    [20] . Acta Physica Sinica, 1975, 24(1): 12-20. doi: 10.7498/aps.24.12
Metrics
  • Abstract views:  6773
  • PDF Downloads:  205
  • Cited By: 0
Publishing process
  • Received Date:  18 December 2017
  • Accepted Date:  07 February 2018
  • Published Online:  20 April 2019

/

返回文章
返回
Baidu
map