Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical experiment studies of clogging during the discharge of granular matter in a three-dimensional hopper

Ma Li-Dong Yang Guang-Hui Zhang Sheng Lin Ping Tian Yuan Yang Lei

Citation:

Numerical experiment studies of clogging during the discharge of granular matter in a three-dimensional hopper

Ma Li-Dong, Yang Guang-Hui, Zhang Sheng, Lin Ping, Tian Yuan, Yang Lei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • For a granular flow in hopper in engineering and experimental applications, it is necessary to guarantee the discharge continuously and steadily. The clogging will easily happen if the outlet size is small enough via formation of the arch above the outlet. The clogging phenomenon is also important for studying traffic or evacuation problems. In previous numerical and experimental study, to expedite the experiments or simulations, the perturbations, such as a jet of pressurized air or the vibration of the wall of the hopper, were induced to break the clogging and restart the flow. But these perturbations are hardly normalized and described in modeling the process. In this paper, we present a series of numerical experiments of clogging in the discharge of particles from a three-dimensional hopper through a circular opening. We employ our discrete element method simulation code for large scale dense granular flow based on the graphic processing unit to expedite this simulation. In contrast to pervious studies, here we study the first clogging after opening the outlet of hopper, thus the above perturbations are avoided. From simulating granular flow in hopper in a wide range of outlet size and cone angle, we obtain the size of distribution of avalanche, which is defined as the number of particles that fall through the opening from the outlet opening to the first clogging. The effects of the outlet size and cone angle of hopper on avalanche size are investigated and discussed. The results show that the previous conclusion of the distribution of possibility of avalanche size is also valid in this study. There is a peak in the distribution of possibility of avalanche size, and the distribution can be divided into two regions, which can be fitted with a power-law and an exponential function respectively. The exponential part can be explained by a possibility model which is suggested by Janda et al. From the fitting we find that it has a critical value for the outlet size above which no clogging will occur and the value in this work (4.75d) is slightly lower than in Zuriguel et al.'s experiment (4.94d). Moreover, there is also a critical value for the cone angle of hopper, which supports the inference in previous study and the value in this paper (77) is closed to the predicted one (75) in To et al.'s work.
      Corresponding author: Yang Lei, lyang@impcas.ac.cn
    • Funds: Project supported by the National Magnetic Confinement Fusion Science Program of China (Grant No. 2014GB104002) and National Natural Science Foundation of China (Grant No. 11605264).
    [1]

    Peng Y J, Zhang Z, Wang Y, et al. 2012 Acta Phys. Sin. 61 134501 (in Chinese)[彭亚晶, 张卓, 王勇, 等 2012 61 134501]

    [2]

    Xie X M, Jiang Y M, Wang H Y, et al. 2003 Acta Phys. Sin. 52 2194 (in Chinese)[谢晓明, 蒋亦民, 王焕友, 等 2003 52 2194]

    [3]

    Lu K Q, Hou M Y, Jiang Z H, et al. 2012 Acta Phys. Sin. 61 119103 (in Chinese)[陆坤权, 厚美瑛, 姜泽辉, 等 2012 61 119103]

    [4]

    Zuriguel I, Pugnaloni L A, Garcimartin A, Maza D 2003 Phys. Rev. E 68 3

    [5]

    Thomas C C, Durian D J 2015 Phys. Rev. Lett. 114 17

    [6]

    Lu K, Liu J 2004 Physics 33 10 (in Chinese)[陆坤权, 刘寄星 2004 物理 33 10]

    [7]

    Zuriguel I, Parisi D R, Hidalgo R C, Lozano C, Janda A, Gago P A, Peralta J P, Ferrer L M, Pugnaloni L A, Clement E, Maza D, Pagonabarraga I, Garcimartin A 2014 Sci. Reports 4 7324

    [8]

    To K, Lai P Y, Pak H K 2001 Phys. Rev. Lett. 86 1

    [9]

    Masuda T, Nishinari K, Schadschneider A 2014 Phys. Rev. Lett. 112 13

    [10]

    To K W 2005 Phys. Rev. E 71 6

    [11]

    Janda A, Zuriguel I, Garcimartin A, Pugnaloni L A, Maza D 2008 EPL 84 4

    [12]

    Kondic L 2014 Granular Matter 16 2

    [13]

    Guariguata A, Pascall M A, Gilmer M W, Sum A K, Sloan E D, Koh C A, Wu D T 2012 Phys. Rev. E 86 6

    [14]

    Lin Y J, Fang C 2016 J. Mech. 32 6

    [15]

    Longjas A, Monterola C, Saloma C 2009 J. Statist. Mech. Theory and Experiment 2009 05006

    [16]

    Kunte A, Doshi P, Orpe A V 2014 Phys. Rev. E 90 2

    [17]

    Hong X, Kohne M, Weeks E R 2015 arXiv preprint

    [18]

    Zuriguel I, Garcimartin A, Maza D 2005 Phys. Rev. E 71 5

    [19]

    Mankoc C, Garcimartin A, Zuriguel I, Maza D 2009 Phys. Rev. E 80 1

    [20]

    Zuriguel I 2014 Papers in Physics 6 060014

    [21]

    Zuriguel I, Janda A, Garcimartin A, Lozano C, Arevalo R, Maza D 2011 Phys. Rev. Lett. 107 27

    [22]

    Lozano C, Janda A, Garcimartin A, Maza D, Zuriguel I 2012 Phys. Rev. E 86 3

    [23]

    Saraf S, Franklin S V 2011 Phys. Rev. E 83 3

    [24]

    Tian Y, Qi J, Lai J, Zhou Q, Yang L 2013 Proceedings of the Awareness Science and Technology and Ubi-Media Computing Aizu-Wakamatsu, Japan, November 2-4, 2013 p547

    [25]

    Tian Y, Zhang S, Lin P, Yang Q, Yang G, Yang L 2017 Comput. Chem. Engineer. 104 231

    [26]

    Snoeijer J H, van Hecke M, Somfai E, van Saarloos W 2003 Phys. Rev. E 67 3

  • [1]

    Peng Y J, Zhang Z, Wang Y, et al. 2012 Acta Phys. Sin. 61 134501 (in Chinese)[彭亚晶, 张卓, 王勇, 等 2012 61 134501]

    [2]

    Xie X M, Jiang Y M, Wang H Y, et al. 2003 Acta Phys. Sin. 52 2194 (in Chinese)[谢晓明, 蒋亦民, 王焕友, 等 2003 52 2194]

    [3]

    Lu K Q, Hou M Y, Jiang Z H, et al. 2012 Acta Phys. Sin. 61 119103 (in Chinese)[陆坤权, 厚美瑛, 姜泽辉, 等 2012 61 119103]

    [4]

    Zuriguel I, Pugnaloni L A, Garcimartin A, Maza D 2003 Phys. Rev. E 68 3

    [5]

    Thomas C C, Durian D J 2015 Phys. Rev. Lett. 114 17

    [6]

    Lu K, Liu J 2004 Physics 33 10 (in Chinese)[陆坤权, 刘寄星 2004 物理 33 10]

    [7]

    Zuriguel I, Parisi D R, Hidalgo R C, Lozano C, Janda A, Gago P A, Peralta J P, Ferrer L M, Pugnaloni L A, Clement E, Maza D, Pagonabarraga I, Garcimartin A 2014 Sci. Reports 4 7324

    [8]

    To K, Lai P Y, Pak H K 2001 Phys. Rev. Lett. 86 1

    [9]

    Masuda T, Nishinari K, Schadschneider A 2014 Phys. Rev. Lett. 112 13

    [10]

    To K W 2005 Phys. Rev. E 71 6

    [11]

    Janda A, Zuriguel I, Garcimartin A, Pugnaloni L A, Maza D 2008 EPL 84 4

    [12]

    Kondic L 2014 Granular Matter 16 2

    [13]

    Guariguata A, Pascall M A, Gilmer M W, Sum A K, Sloan E D, Koh C A, Wu D T 2012 Phys. Rev. E 86 6

    [14]

    Lin Y J, Fang C 2016 J. Mech. 32 6

    [15]

    Longjas A, Monterola C, Saloma C 2009 J. Statist. Mech. Theory and Experiment 2009 05006

    [16]

    Kunte A, Doshi P, Orpe A V 2014 Phys. Rev. E 90 2

    [17]

    Hong X, Kohne M, Weeks E R 2015 arXiv preprint

    [18]

    Zuriguel I, Garcimartin A, Maza D 2005 Phys. Rev. E 71 5

    [19]

    Mankoc C, Garcimartin A, Zuriguel I, Maza D 2009 Phys. Rev. E 80 1

    [20]

    Zuriguel I 2014 Papers in Physics 6 060014

    [21]

    Zuriguel I, Janda A, Garcimartin A, Lozano C, Arevalo R, Maza D 2011 Phys. Rev. Lett. 107 27

    [22]

    Lozano C, Janda A, Garcimartin A, Maza D, Zuriguel I 2012 Phys. Rev. E 86 3

    [23]

    Saraf S, Franklin S V 2011 Phys. Rev. E 83 3

    [24]

    Tian Y, Qi J, Lai J, Zhou Q, Yang L 2013 Proceedings of the Awareness Science and Technology and Ubi-Media Computing Aizu-Wakamatsu, Japan, November 2-4, 2013 p547

    [25]

    Tian Y, Zhang S, Lin P, Yang Q, Yang G, Yang L 2017 Comput. Chem. Engineer. 104 231

    [26]

    Snoeijer J H, van Hecke M, Somfai E, van Saarloos W 2003 Phys. Rev. E 67 3

  • [1] Li Wei-Jian, Zhou Xiao-Yan, Lu Hang-Jun. Abnormal blockage of water flow in valveless nanopumps. Acta Physica Sinica, 2024, 73(9): 094702. doi: 10.7498/aps.73.20240115
    [2] Chen Bai-Hui, Shi Bao-Chang, Wang Lei, Chai Zhen-Hua. GPU based lattice Boltzmann simulation and analysis of two-dimensional trapezoidal cavity flow. Acta Physica Sinica, 2023, 72(15): 154701. doi: 10.7498/aps.72.20230430
    [3] Huang Hao-Wei, Liang Hong, Xu Jiang-Rong. Effect of surface tension on late-time growth of high-Reynolds-number Rayleigh-Taylor instability. Acta Physica Sinica, 2021, 70(11): 114701. doi: 10.7498/aps.70.20201960
    [4] Zhang Wei, Hu Lin, Zhang Xing-Gang. Structural features of critical jammed state in bi-disperse granular systems. Acta Physica Sinica, 2016, 65(2): 024502. doi: 10.7498/aps.65.024502
    [5] Guo Kong-Ming, Jiang Jun. Noise-induced intermittency in Hénon map and estimation of critical strength of noise. Acta Physica Sinica, 2014, 63(19): 190503. doi: 10.7498/aps.63.190503
    [6] Song Tian-Ming, Yang Jia-Min. One-dimensional simulation of radiation transport in three-dimensional cylinder. Acta Physica Sinica, 2013, 62(1): 015210. doi: 10.7498/aps.62.015210
    [7] Pan Wei, Yu He-Jun, Zhang Xiao-Guang, Xi Li-Xia. Numerical simulation and analysis of a high-Q two-dimensional photonic crystal L3 microcavity. Acta Physica Sinica, 2012, 61(3): 034209. doi: 10.7498/aps.61.034209
    [8] Peng Kai, Liu Da-Gang, Liao Chen, Liu Sheng-Gang. Numerical simulation and study of electron cyclotron maser. Acta Physica Sinica, 2011, 60(9): 091301. doi: 10.7498/aps.60.091301
    [9] Zhao Ming, Yu Boming. Numerical simulations of immiscible two-phase flow displacement based on 3D network model for fractal porous media. Acta Physica Sinica, 2011, 60(9): 098103. doi: 10.7498/aps.60.098103
    [10] Zou Wei-Ke, Kong Xiang-Mu, Wang Chun-Yang, Gao Zhong-Yang. Critical behavior of the quantum Heisenberg model on three-dimensional diamond-type hierarchical lattice. Acta Physica Sinica, 2010, 59(7): 4874-4879. doi: 10.7498/aps.59.4874
    [11] Pan Shi-Yan, Zhu Ming-Fang. Modelling of solutal dendritic growth in three dimensions. Acta Physica Sinica, 2009, 58(13): 278-S284. doi: 10.7498/aps.58.278
    [12] Wang Wei, Zhang Qi-Chang, Wang Xue-Jiao. The application of the undetermined fundamental frequency for analyzing the critical value of chaos. Acta Physica Sinica, 2009, 58(8): 5162-5168. doi: 10.7498/aps.58.5162
    [13] Huang Qun-Xing, Liu Dong, Wang Fei, Yan Jian-Hua, Chi Yong, Cen Ke-Fa. Study on three-dimensional flame temperature distribution reconstruction based on truncated singular value decomposition. Acta Physica Sinica, 2007, 56(11): 6742-6748. doi: 10.7498/aps.56.6742
    [14] Lu Hang-Jun, Wu Feng-Min. Simulation of 3-dimensional thin film growth on heterogeneous substrate. Acta Physica Sinica, 2006, 55(1): 424-429. doi: 10.7498/aps.55.424
    [15] Ding Ying-Tao, He Feng, Yao Zhao-Hui, Shen Meng-Yu, Wang Xue-Fang. Sub-choking phenomenon of low-speed gas flow in a long-constant-area microchannel. Acta Physica Sinica, 2004, 53(8): 2429-2433. doi: 10.7498/aps.53.2429
    [16] SHAO YUAN-ZHI, LAN TU, LIN GUANG-MING. DYNAMICAL TRANSITION AND TRICRITICAL POINTS OF 3D KINETIC ISING SPIN SYSTEM . Acta Physica Sinica, 2001, 50(5): 942-947. doi: 10.7498/aps.50.942
    [17] PENG JING-CUI. SIMULATION OF TWO AND THREE DIMENSIONAL RING POLYMERS USING CLOSED GAUSSIAN RANDOM WALKS. Acta Physica Sinica, 1994, 43(10): 1580-1586. doi: 10.7498/aps.43.1580
    [18] JI DA-REN, ZHANG JIAN-BO, YING HE-PING. MONTE CARLO SIMULATION OF THE THREE-STATE VECTOR POTTS MODEL ON A THREE-DIMENSIONAL RANDOM LATTICE. Acta Physica Sinica, 1992, 41(7): 1162-1166. doi: 10.7498/aps.41.1162
    [19] WEI CHENG-LIAN, DONG YU-LAN, GAO ZHI-WEI. A NEW PHENOMENON ABOUT THE {111} PLANAR PARTICLES BLOCKING DIP IN SINGLE CRYSTAL Si. Acta Physica Sinica, 1980, 29(9): 1222-1225. doi: 10.7498/aps.29.1222
    [20] CHEN CHANG, WEI CHENG-LIAN, DONG YU-LAIN, LIU SHI-JIE, XIA GUANG-CHANG, FAN JING-YUN, WANG QI-LIANG, GAO ZHI-WEI. THE BLOCKING EFFECT OF Si, GaAs AND LiNbO3 SINGLE CRYSTALS. Acta Physica Sinica, 1979, 28(3): 324-333. doi: 10.7498/aps.28.324
Metrics
  • Abstract views:  6492
  • PDF Downloads:  295
  • Cited By: 0
Publishing process
  • Received Date:  10 August 2017
  • Accepted Date:  13 December 2017
  • Published Online:  20 February 2019

/

返回文章
返回
Baidu
map