-
A full quantum theory is adopted to derive the differential equations satisfied by the state of a system that is composed of an electron tunneling-coupled quantum-dot molecule interacting with a single-mode radiation field. The phase of the field is calculated by the Pegg-Barnett quantum phase formalism under the initial condition of a coherent-state field and the tunneling excited state or ground state for the quantum-dot molecule. Phase distribution and fluctuation of the field are analyzed, the influence of interaction between phonons and the quantum-dot molecule on the Pegg-Barnett quantum phase is investigated, and the phase distribution is compared with the Husimi phase distribution of the field. Results indicate that temperature can have a marked impact on the phase evolution. The existence of phonons suppresses the field phase distribution and fluctuation in the case when the quantum dot molecule is initially in the tunneling-excited state, while it enhances the diffusion and fluctuation of the field phase in the case when the quantum dot molecule is initially in the ground state. The Husimi phase distribution and the Pegg-Barnett phase distribution agree with each other fairly well in our study.
-
Keywords:
- quantum-dot molecule /
- phonon /
- quantum phase /
- Husimi Q function
[1] Gerry C, Knight P 2004 Introductory quantum optics. (New York: Cambridge University Press)
[2] Barnett S M, Pegg D T 1989 J. Mod. Opt. 36 7
[3] Pegg D T, Barnett S M 1989 Phys. Rev. A 39 1665
[4] Wang Y, Wang J, Liu S 2010 Chin. Phys. B 19 074206
[5] Honarasa G R, Tavassoly M K, Hatami M 2012 Chin. Phys. B 21 054208
[6] Verma A, Patha K 2009 Phys. Lett. A 373 1421
[7] Qian Y, Ma A, Ma Z 2007 Acta Phys. Sin. 56 4751 (in Chinese) [钱妍, 马爱群, 马志名 2007 56 4571]
[8] Obada A F, Hessian H A, Hashem M 2009 J. Phys. B 42 175502
[9] Gantsog T, Tanas R 1996 Phys. Rev. A 53 562
[10] Dung H T, Tanas R, Shumovsky A S 1990 Opt. Commun. 79 462
[11] Kosionis S G, Terzis A F, Paspalakis E 2007 Phys. Rev. B 75 193305
[12] Li Jiehua, Yu Rong, Si Liugang 2009 Opt. Commun. 282 2437
[13] Li J, Liu J, Yang X 2008 Physica E 40 2916
[14] Yuan C 2007 J. Appl. Phys. 102 023109
[15] Villas-Bose J M, Govorov A O, Ulloa S E 2004 Phys. Rev. B 69 125342
[16] Yuan X Z, Zhu K D 2005 Phys. Lett. A 334 226
[17] Wu C, Zhu K 2008 Phys. Lett. A 372 537
-
[1] Gerry C, Knight P 2004 Introductory quantum optics. (New York: Cambridge University Press)
[2] Barnett S M, Pegg D T 1989 J. Mod. Opt. 36 7
[3] Pegg D T, Barnett S M 1989 Phys. Rev. A 39 1665
[4] Wang Y, Wang J, Liu S 2010 Chin. Phys. B 19 074206
[5] Honarasa G R, Tavassoly M K, Hatami M 2012 Chin. Phys. B 21 054208
[6] Verma A, Patha K 2009 Phys. Lett. A 373 1421
[7] Qian Y, Ma A, Ma Z 2007 Acta Phys. Sin. 56 4751 (in Chinese) [钱妍, 马爱群, 马志名 2007 56 4571]
[8] Obada A F, Hessian H A, Hashem M 2009 J. Phys. B 42 175502
[9] Gantsog T, Tanas R 1996 Phys. Rev. A 53 562
[10] Dung H T, Tanas R, Shumovsky A S 1990 Opt. Commun. 79 462
[11] Kosionis S G, Terzis A F, Paspalakis E 2007 Phys. Rev. B 75 193305
[12] Li Jiehua, Yu Rong, Si Liugang 2009 Opt. Commun. 282 2437
[13] Li J, Liu J, Yang X 2008 Physica E 40 2916
[14] Yuan C 2007 J. Appl. Phys. 102 023109
[15] Villas-Bose J M, Govorov A O, Ulloa S E 2004 Phys. Rev. B 69 125342
[16] Yuan X Z, Zhu K D 2005 Phys. Lett. A 334 226
[17] Wu C, Zhu K 2008 Phys. Lett. A 372 537
Catalog
Metrics
- Abstract views: 6551
- PDF Downloads: 423
- Cited By: 0