Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Chemical potential-functional-theory about the properties of one-dimensional Hubbard model at finite temperature

Lu Zhan-Peng Wei Xing-Bo Liu Tian-Shuai Chen A-Hai Gao Xian-Long

Citation:

Chemical potential-functional-theory about the properties of one-dimensional Hubbard model at finite temperature

Lu Zhan-Peng, Wei Xing-Bo, Liu Tian-Shuai, Chen A-Hai, Gao Xian-Long
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, we numerically solve the thermodynamic Bethe-ansatz coupled equations for a one-dimensional Hubbard model at finite temperature and obtain the second order thermodynamics properties, such as the specific heat, compressibility, and susceptibility. We find that these three quantities could embody the phase transitions of the system, from the vacuum state to the metallic state, from the metallic state to the Mott-insulating phase, from the Mott-insulating phase to the metallic state, and from the metallic state to the band-insulating phase. With the increase of temperature, the thermal fluctuation overwhelms the quantum fluctuations and the phase transition points disappear due to the destruction of the Mott-insulating phase. But in the case of the strong interaction strength, the Mott-insulating phase is robust, embodying the compressibility. Furthermore, we study the thermodynamic properties of the inhomogeneous Hubbard model with trapping potential. Making use of the Bethe-ansatz results from the homogeneous Hubbard model, we construct the chemical potential-functional theory (-BALDA) for the inhomogeneous Hubbard model instead of the commonly used density-functional theory, in order to solve the in-convergence problem of the Kohn-Sham equation in the case of the divergence appearing in the exchange-correlation potential. We further point out a multi-dimensional bisection method which changes the Kohn-Shan equation into a problem of finding the fixed points. Through -BALDA we numerically solve the one-dimensional homogeneous Hubbard model of trapping potential. The density profile and the local compressibility are obtained. We find that at a given interaction strength, the metallic phase and the Mott-insulating phase are destroyed and the density profile becomes a Guassian distribution with increasing temperature. To the metallic phase, Friedel oscillation caused by quantum fluctuations is still visible at low temperature. With increasing temperature, Friedel oscillation will disappear. This situation reflects the fact that the thermal fluctuation overwhelms the quantum fluctuations. For the Mott-insulating phase, the Mott-insulating plateau is robust at a certain temperature and only the boundary of the Mott-insulating plateau is destroyed. With increasing temperature, the Mott insulating plateau will be destroyed. And the change of the local compressibility provides the information about such a change. So we conclude that the thermal fluctuation destroys the original quantum phase. Through our analysis, we find that the -BALDA can be used to study the finite temperature properties for the system of the exchange-correlation potential divergence with high efficiency.
      Corresponding author: Gao Xian-Long, gaoxl@zjnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11374266), the Program for New Century Excellent Talents in University, China, and the Natural Science Foundation of Zhejiang Province, China (Grant No. Z15A050001).
    [1]

    Wang Z C 2003 Thermodynamics Statistical Physics (Beijing: Higher Education Press) p300 (in Chinese) [汪志诚 1993 热力学和统计物理学 (北京: 高等教育出版社) 第300页]

    [2]

    Chu S, Hollberg L, Bjorkholm J E, Cable A, Ashkin A 1985 Phys. Rev. Lett. 55 48

    [3]

    Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M, Ketterle W 1995 Phys. Rev. Lett. 75 3969

    [4]

    Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198

    [5]

    DeMarco B, Jin D S 1999 Science 285 1703

    [6]

    Feshbach H 1958 Ann. Phys. 5 357

    [7]

    Batchelor M T, Bortz M, Guan X W, Oelkers N 2005 Phys. Rev. A 72 061603

    [8]

    Pachos J K, Knight P L 2003 Phys. Rev. Lett. 91 107902

    [9]

    Tomonaga S 1950 Prog. Theo. Phys. 5 544

    [10]

    Luttinger J M 1963 J. Math. Phys. 4 1154

    [11]

    Gao X L 2010 Phys. Rev. B 81 104306

    [12]

    Bethe H 1931 Z. Phys. 71 205

    [13]

    Lieb E H, Liniger W 1963 Phys. Rev. 130 1605

    [14]

    Yang C N 1967 Phys. Rev. Lett. 19 1312

    [15]

    Gaudin M 1967 Phys. Lett. A 24 55

    [16]

    Lieb E H, Wu F Y 1968 Phys. Rev. Lett. 20 1445

    [17]

    Hu H, Gao X L, Liu X J 2014 Phys. Rev. A 90 013622

    [18]

    Lee J Y, Guan X W, Sakai K, Batchelor M T 2012 Phys. Rev. B 85 085414

    [19]

    Guan X W, Batchelor M T, Lee C 2013 Rev. Mod. Phys. 85 1633

    [20]

    Yang C N, Yang C P 1969 J. Math. Phys. 10 1115

    [21]

    Takahashi M 1969 Prog. Theo. Phys. 42 1098

    [22]

    Takahashi M 1972 Prog. Theo. Phys. 47 69

    [23]

    Batchelor M T, Guan X W 2006 Phys. Rev. B 74 195121

    [24]

    Batchelor M T, Guan X W, Oelkers N 2006 Phys. Rev. Lett. 96 210402

    [25]

    Guan X W, Batchelor M T, Lee C, Bortz M 2007 Phys. Rev. B 76 085120

    [26]

    Jiang Y Z, Chen Y Y, Guan X W 2015 Chin. Phys. B 24 050311

    [27]

    Kuhn C C N, Guan X W, Foerster A, Batchelor M T 2012 Phys. Rev. A 86 011605

    [28]

    Guan X W, Lee J Y, Batchelor M T, Yin X G, Chen S 2010 Phys. Rev. A 82 021606

    [29]

    Gao X L, Chen A H, Tokatly I V, Kurth S 2012 Phys. Rev. B 86 235139

    [30]

    Gao X L 2012 J. Phys. B 45 225304

    [31]

    Gao X L, Asgari R 2008 Phys. Rev. A 77 033604

    [32]

    Hu J H, Wang J J, Gao X L, Okumura M, Igarashi R, Yamada S, Machida M 2010 Phys. Rev. B 82 014202

    [33]

    Campo V L 2015 Phys. Rev. A 92 013614

    [34]

    Gao X L, Polini M, Rainis D, Tosi M P, Vignale G 2008 Phys. Rev. Lett. 101 206402

    [35]

    Li W, Gao X L, Kollath C, Polini M 2008 Phys. Rev. B 78 195109

    [36]

    Takahashi M, Shiroishi M 2002 Phys. Rev. B 65 165104

    [37]

    Ying Z J, Brosco V, Lorenzana J 2014 Phys. Rev. B 89 205130

    [38]

    Wang C J, Chen A H, Gao X L 2012 Acta Phys. Sin. 61 127501 (in Chinese) [王婵娟, 陈阿海, 高先龙 2012 61 127501]

  • [1]

    Wang Z C 2003 Thermodynamics Statistical Physics (Beijing: Higher Education Press) p300 (in Chinese) [汪志诚 1993 热力学和统计物理学 (北京: 高等教育出版社) 第300页]

    [2]

    Chu S, Hollberg L, Bjorkholm J E, Cable A, Ashkin A 1985 Phys. Rev. Lett. 55 48

    [3]

    Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M, Ketterle W 1995 Phys. Rev. Lett. 75 3969

    [4]

    Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198

    [5]

    DeMarco B, Jin D S 1999 Science 285 1703

    [6]

    Feshbach H 1958 Ann. Phys. 5 357

    [7]

    Batchelor M T, Bortz M, Guan X W, Oelkers N 2005 Phys. Rev. A 72 061603

    [8]

    Pachos J K, Knight P L 2003 Phys. Rev. Lett. 91 107902

    [9]

    Tomonaga S 1950 Prog. Theo. Phys. 5 544

    [10]

    Luttinger J M 1963 J. Math. Phys. 4 1154

    [11]

    Gao X L 2010 Phys. Rev. B 81 104306

    [12]

    Bethe H 1931 Z. Phys. 71 205

    [13]

    Lieb E H, Liniger W 1963 Phys. Rev. 130 1605

    [14]

    Yang C N 1967 Phys. Rev. Lett. 19 1312

    [15]

    Gaudin M 1967 Phys. Lett. A 24 55

    [16]

    Lieb E H, Wu F Y 1968 Phys. Rev. Lett. 20 1445

    [17]

    Hu H, Gao X L, Liu X J 2014 Phys. Rev. A 90 013622

    [18]

    Lee J Y, Guan X W, Sakai K, Batchelor M T 2012 Phys. Rev. B 85 085414

    [19]

    Guan X W, Batchelor M T, Lee C 2013 Rev. Mod. Phys. 85 1633

    [20]

    Yang C N, Yang C P 1969 J. Math. Phys. 10 1115

    [21]

    Takahashi M 1969 Prog. Theo. Phys. 42 1098

    [22]

    Takahashi M 1972 Prog. Theo. Phys. 47 69

    [23]

    Batchelor M T, Guan X W 2006 Phys. Rev. B 74 195121

    [24]

    Batchelor M T, Guan X W, Oelkers N 2006 Phys. Rev. Lett. 96 210402

    [25]

    Guan X W, Batchelor M T, Lee C, Bortz M 2007 Phys. Rev. B 76 085120

    [26]

    Jiang Y Z, Chen Y Y, Guan X W 2015 Chin. Phys. B 24 050311

    [27]

    Kuhn C C N, Guan X W, Foerster A, Batchelor M T 2012 Phys. Rev. A 86 011605

    [28]

    Guan X W, Lee J Y, Batchelor M T, Yin X G, Chen S 2010 Phys. Rev. A 82 021606

    [29]

    Gao X L, Chen A H, Tokatly I V, Kurth S 2012 Phys. Rev. B 86 235139

    [30]

    Gao X L 2012 J. Phys. B 45 225304

    [31]

    Gao X L, Asgari R 2008 Phys. Rev. A 77 033604

    [32]

    Hu J H, Wang J J, Gao X L, Okumura M, Igarashi R, Yamada S, Machida M 2010 Phys. Rev. B 82 014202

    [33]

    Campo V L 2015 Phys. Rev. A 92 013614

    [34]

    Gao X L, Polini M, Rainis D, Tosi M P, Vignale G 2008 Phys. Rev. Lett. 101 206402

    [35]

    Li W, Gao X L, Kollath C, Polini M 2008 Phys. Rev. B 78 195109

    [36]

    Takahashi M, Shiroishi M 2002 Phys. Rev. B 65 165104

    [37]

    Ying Z J, Brosco V, Lorenzana J 2014 Phys. Rev. B 89 205130

    [38]

    Wang C J, Chen A H, Gao X L 2012 Acta Phys. Sin. 61 127501 (in Chinese) [王婵娟, 陈阿海, 高先龙 2012 61 127501]

  • [1] Ni Yu, Sun Jian, Quan Ya-Min, Luo Dong-Qi, Song Yun. Dynamical mean-field theory of two-orbital Hubbard model. Acta Physica Sinica, 2022, 71(14): 147103. doi: 10.7498/aps.71.20220286
    [2] Zhang Ruo-Han, Ren Hui-Ying, He Lin. Flat bands and related novel quantum states in two-dimensional systems. Acta Physica Sinica, 2022, 71(12): 127302. doi: 10.7498/aps.71.20220225
    [3] Jiang Yi-Min, Liu Mario. A thermodynamic model of grain-grain contact force. Acta Physica Sinica, 2018, 67(4): 044502. doi: 10.7498/aps.67.20171441
    [4] Zhang Long, Weng Zheng-Yu. Phase string effect and mutual Chern-Simons theory of Hubbard model. Acta Physica Sinica, 2015, 64(21): 217101. doi: 10.7498/aps.64.217101
    [5] Zhao Hong-Xia, Zhao Hui, Chen Yu-Guang, Yan Yong-Hong. Phase diagram of the one-dimensional extended ionic Hubbard model. Acta Physica Sinica, 2015, 64(10): 107101. doi: 10.7498/aps.64.107101
    [6] Han Guang, Sun Cheng, Wu Di, Chen Wei-Rong. Electrochemical potential equilibrium criterion of Invar alloy. Acta Physica Sinica, 2014, 63(6): 068101. doi: 10.7498/aps.63.068101
    [7] Quan Ya-Min, Liu Da-Yong, Zou Liang-Jian. Numerical algorithm for slave-boson mean field approach to the multi-band Hubbard model. Acta Physica Sinica, 2012, 61(1): 017106. doi: 10.7498/aps.61.017106
    [8] Xie Yuan-Dong. Soliton excitations of one-dimensional Bose-Hubbard model. Acta Physica Sinica, 2012, 61(2): 023201. doi: 10.7498/aps.61.023201
    [9] Han Guang, Qiang Jian-Bing, Wang Qing, Wang Ying-Min, Xia Jun-Hai, Zhu Chun-Lei, Quan Shi-Guang, Dong Chuang. Electrochemical potential equilibrium of electrons in ideal metallic glasses based on the cluster-resonance model. Acta Physica Sinica, 2012, 61(3): 036402. doi: 10.7498/aps.61.036402
    [10] Xu Jing, Wang Zhi-Guo, Chen Yu-Guang, Shi Yun-Long, Chen Hong. The phase diagram of Hubbard model with alternating chemical potentials. Acta Physica Sinica, 2005, 54(1): 307-312. doi: 10.7498/aps.54.307
    [11] Tan Bin, Li Zhi-Yong, Li Shi-Chen. Study of pulse transmission properties in nonlinear optical loop mirror. Acta Physica Sinica, 2004, 53(9): 3071-3076. doi: 10.7498/aps.53.3071
    [12] HE LIN, DENG YONG-YUAN. . Acta Physica Sinica, 1995, 44(1): 80-86. doi: 10.7498/aps.44.80
    [13] OU FA. . Acta Physica Sinica, 1995, 44(10): 1541-1550. doi: 10.7498/aps.44.1541
    [14] WEI GUO-ZHU. ELECTRON CORRELATION EFFECT IN THE HUBBARD-HIRSCH MODEL. Acta Physica Sinica, 1994, 43(11): 1828-1832. doi: 10.7498/aps.43.1828
    [15] NIE HUI-QUAN, WEI GUO-ZHU, ZHANG KAI-YI. LOCAL APPROACH FOR THE EXTENDED HUBBARD MODEL. Acta Physica Sinica, 1988, 37(5): 720-726. doi: 10.7498/aps.37.720
    [16] WEI GUO-ZHU, NIE HUI-QUAN, ZHANG KAI-YI. LOCAL APPROACH IN THE HUBBARD MODEL. Acta Physica Sinica, 1988, 37(1): 87-94. doi: 10.7498/aps.37.87
    [17] XU HUI, ZHANG KAI-YI. THERMODYNAMIC PROPERTIES OF THE ONE-DIMENSIONAL EXTENDED HUBBARD MODEL(Ⅰ)——U>0. Acta Physica Sinica, 1985, 34(11): 1422-1432. doi: 10.7498/aps.34.1422
    [18] XU HUI, ZHANG KAI-YI. THERMODYNAMIC PROPERTIES OF THE ONE-DIMENSIONAL EXTENDED HUBBARD MODEL (Ⅱ)——U<0. Acta Physica Sinica, 1985, 34(11): 1433-1441. doi: 10.7498/aps.34.1433
    [19] CHEN ZONG-YUN, ZHOU YI-CHANG, HUANG NIAN-NING. ON THE FUNCTIONAL EVALUATION OF EFFECTIVE POTENTIAL IN SCALAR QED. Acta Physica Sinica, 1982, 31(5): 660-663. doi: 10.7498/aps.31.660
    [20] . Acta Physica Sinica, 1964, 20(10): 1061-1066. doi: 10.7498/aps.20.1061
Metrics
  • Abstract views:  6996
  • PDF Downloads:  412
  • Cited By: 0
Publishing process
  • Received Date:  07 January 2017
  • Accepted Date:  26 March 2017
  • Published Online:  05 June 2017

/

返回文章
返回
Baidu
map