Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A method of detecting underwater weak target based on generalized Duffing oscillator

Yao Hai-Yang Wang Hai-Yan Zhang Zhi-Chen Shen Xiao-Hong

Citation:

A method of detecting underwater weak target based on generalized Duffing oscillator

Yao Hai-Yang, Wang Hai-Yan, Zhang Zhi-Chen, Shen Xiao-Hong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In the marine environment, when the line spectra of underwater target radiated signal are unknown or the continuous spectra are weak, it is extremely hard to accurately detect the underwater weak target. The line spectrum based method commonly requires spectrum information for detection, and the continuous spectrum based energy method is hard to achieve accurate detection in long distance. In this paper, an underwater radiated noise detection method based on generalized Duffing oscillator detection system is proposed. Firstly, a generalized Duffing oscillator detection system for non-periodic and non-stationary input signal is proposed through deducing the traditional Duffing oscillator detection system that is perturbed by periodic signal. And the proposed generalized Duffing oscillator detection system is able to detect the signals of targets without needing prior information. Secondly, when the target radiated signal (non-periodic and non-stationary signal) is input into the generalized Duffing oscillator, a special form of output phase space (a special state of motion) is discovered and the differences in output phase space among different input signals (periodic stationary signals, nonperiodic non-stationary signals and the target radiated signals) are analyzed. It is found that the special phase space has different form from the output phase spaces of other kinds of signals; accordingly the underwater targets can be detected through the representation of the difference between special phase space and ordinary phase space. Thirdly, a discrete distribution sequence calculation method based on phase space is proposed for the precise and efficient judgment of system motion. The proposed calculation method defines a similar-grid function, based on which, the distribution sequence calculation method of output phase space is deduced, and the distribution sequences of different kinds of output phase spaces are calculated. The method realizes an embedded expression of system output by using the statistical complexity, therefore achieving the embedded underwater target detection when the line spectra of underwater target radiated signal are unknown or the continuous spectra are weak. The analysis result indicates that the method is of low-computation. Finally, the experimental results in the sea are described and the lowest signalto-noise ratio (SNR) of the method is calculated to be -9.133 dB. Simulation and experimental results have shown that the proposed method can detect target successfully in a lower SNR than traditional detection method, and the real-time performance can meet the demand for underwater detection. The method in this paper provides new ideas and ways of thinking for underwater target detection, and has very important reference value for low SNR long-distance target detection under real condition.
      Corresponding author: Wang Hai-Yan, hyang@mail.nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61571365).
    [1]

    Li Q H, Li M, Yang X T 2008 Acta Acoust. 33 193 (in Chinese) [李启虎, 李敏, 杨秀庭 2008 声学学报 33 193]

    [2]

    Li Q H, Li M, Yang X T 2008 Acta Acoust. 33 289 (in Chinese) [李启虎, 李敏, 杨秀庭 2008 声学学报 33 289]

    [3]

    Antoni J, Hanson D 2012 IEEE J. Ocean. Eng. 37 478

    [4]

    Zhou G L, Li G H, Cheng J 2009 Comput. Simulat. 7 337 (in Chinese) [周关林, 李钢虎, 成静 2009 计算机仿真 7 337]

    [5]

    Liu H B, Wu D W, Jin W, Wang Y Q 2013 Acta Phys. Sin. 62 050501 (in Chinese) [刘海波, 吴德伟, 金伟, 王永庆 2013 62 050501]

    [6]

    Cong C, Li X K, Song Y 2014 Acta Phys. Sin. 63 064301 (in Chinese) [丛超, 李秀坤, 宋扬 2014 63 064301]

    [7]

    Zhang X Y, Luo L Y 2015 Acta Acoust. 40 511 (in Chinese) [张晓勇, 罗来源 2015 声学学报 40 511]

    [8]

    Kedar S 2011 Comptes Rendus Geosci. 343 548

    [9]

    Cato D H 2012 AIP Conf. Proc. 1495 242

    [10]

    Hinich M J, Marandino D, Sullivan E J 1989 J. Acoust. Soc. Am. 85 1512

    [11]

    Lai Z H, Leng Y G, Sun J Q, Fan S B 2012 Acta Phys. Sin. 61 050503 (in Chinese) [赖志慧, 冷永刚, 孙建桥, 范胜波 2012 61 050503]

    [12]

    He M J, Xu W, Sun Z K 2014 Sci. Sin.: Phys. Mech. Astron. 44 981 (in Chinese) [何美娟, 徐伟, 孙中奎 2014 中国科学: 物理学 力学 天文学 44 981]

    [13]

    Bao F, Li C, Wang X, Wang Q, Du S 2010 J. Acoust. Soc. Am. 128 206

    [14]

    Li Y, Shi Y W, Ma H T, Yang B J 2004 Acta Electron. Sin. 32 87 (in Chinese) [李月, 石要武, 马海涛, 杨宝俊 2004 电子学报 32 87]

    [15]

    Lorenz E N 1995 The Essence of Chaos (Seattle: University of Washington Press) p186

    [16]

    Chen G, Lai D 1998 Int. J. Bifurcat. Chaos 8 1585

    [17]

    Xue Y J, Yang S Y 2003 Chaos Soliton. Fract. 17 717

    [18]

    Bandt C, Pompe B 2002 Phys. Rev. Lett. 88 174102

    [19]

    Grassberger P, Procaccia I 2004 The Theory of Chaotic Attractors (New York: Springer) pp189-208

  • [1]

    Li Q H, Li M, Yang X T 2008 Acta Acoust. 33 193 (in Chinese) [李启虎, 李敏, 杨秀庭 2008 声学学报 33 193]

    [2]

    Li Q H, Li M, Yang X T 2008 Acta Acoust. 33 289 (in Chinese) [李启虎, 李敏, 杨秀庭 2008 声学学报 33 289]

    [3]

    Antoni J, Hanson D 2012 IEEE J. Ocean. Eng. 37 478

    [4]

    Zhou G L, Li G H, Cheng J 2009 Comput. Simulat. 7 337 (in Chinese) [周关林, 李钢虎, 成静 2009 计算机仿真 7 337]

    [5]

    Liu H B, Wu D W, Jin W, Wang Y Q 2013 Acta Phys. Sin. 62 050501 (in Chinese) [刘海波, 吴德伟, 金伟, 王永庆 2013 62 050501]

    [6]

    Cong C, Li X K, Song Y 2014 Acta Phys. Sin. 63 064301 (in Chinese) [丛超, 李秀坤, 宋扬 2014 63 064301]

    [7]

    Zhang X Y, Luo L Y 2015 Acta Acoust. 40 511 (in Chinese) [张晓勇, 罗来源 2015 声学学报 40 511]

    [8]

    Kedar S 2011 Comptes Rendus Geosci. 343 548

    [9]

    Cato D H 2012 AIP Conf. Proc. 1495 242

    [10]

    Hinich M J, Marandino D, Sullivan E J 1989 J. Acoust. Soc. Am. 85 1512

    [11]

    Lai Z H, Leng Y G, Sun J Q, Fan S B 2012 Acta Phys. Sin. 61 050503 (in Chinese) [赖志慧, 冷永刚, 孙建桥, 范胜波 2012 61 050503]

    [12]

    He M J, Xu W, Sun Z K 2014 Sci. Sin.: Phys. Mech. Astron. 44 981 (in Chinese) [何美娟, 徐伟, 孙中奎 2014 中国科学: 物理学 力学 天文学 44 981]

    [13]

    Bao F, Li C, Wang X, Wang Q, Du S 2010 J. Acoust. Soc. Am. 128 206

    [14]

    Li Y, Shi Y W, Ma H T, Yang B J 2004 Acta Electron. Sin. 32 87 (in Chinese) [李月, 石要武, 马海涛, 杨宝俊 2004 电子学报 32 87]

    [15]

    Lorenz E N 1995 The Essence of Chaos (Seattle: University of Washington Press) p186

    [16]

    Chen G, Lai D 1998 Int. J. Bifurcat. Chaos 8 1585

    [17]

    Xue Y J, Yang S Y 2003 Chaos Soliton. Fract. 17 717

    [18]

    Bandt C, Pompe B 2002 Phys. Rev. Lett. 88 174102

    [19]

    Grassberger P, Procaccia I 2004 The Theory of Chaotic Attractors (New York: Springer) pp189-208

  • [1] Li Rong-Feng, Gao Shu-Chao, Xiao Chao-Fan, Xu Zhi-Yi, Xue Xing-Tai, Liu Jian-Bo, Zhao Yan-Ying, Chen Jia-Er, Lu Hai-Yang, Yan Xue-Qing. Generation of ultrafast broadband small angle hundreds MeV electron bunches from laser wakefield acceleration. Acta Physica Sinica, 2017, 66(15): 154101. doi: 10.7498/aps.66.154101
    [2] Zhou Jie, Yang Shuang-Bo. Multifractal behaviors of the wave function for the periodically kicked free top. Acta Physica Sinica, 2015, 64(20): 200505. doi: 10.7498/aps.64.200505
    [3] Fan Hong-Yi. Bivariate normal distribution of coherent state in parameterized phase space. Acta Physica Sinica, 2014, 63(2): 020302. doi: 10.7498/aps.63.020302
    [4] Zhou Jie, Yang Shuang-Bo. Wave function fractal dimensions for the periodically kicked free top. Acta Physica Sinica, 2014, 63(22): 220507. doi: 10.7498/aps.63.220507
    [5] Wang Ting-Zhi, Sun Xian-Ting, Han Yue-Lin. Conformal invariance and conserved quantity of relative motion holonomic dynamical system in phase space. Acta Physica Sinica, 2014, 63(10): 104502. doi: 10.7498/aps.63.104502
    [6] Chen Yun-Fei, Li Gui-Juan, Wang Zhen-Shan, Zhang Ming-Wei, Jia Bing. Statistical feature of underwater target echo highlight. Acta Physica Sinica, 2013, 62(8): 084302. doi: 10.7498/aps.62.084302
    [7] Xu Xue-Xiang, Zhang Ying-Kong, Zhang Hao-Liang, Chen Yuan-Yuan. Wigner function of N00N state and quantum interference with N00N state as input. Acta Physica Sinica, 2013, 62(11): 114204. doi: 10.7498/aps.62.114204
    [8] Lu Kai, Fang Jian-Hui, Zhang Ming-Jiang, Wang Peng. Noether symmetry and Mei symmetry of discrete holonomic system in phase space. Acta Physica Sinica, 2009, 58(11): 7421-7425. doi: 10.7498/aps.58.7421
    [9] Jing Xiao-Dan, Lü Ling. Generalized synchronization of spatiotemporal chaos systems by phase compression. Acta Physica Sinica, 2008, 57(8): 4766-4770. doi: 10.7498/aps.57.4766
    [10] Liu Yang-Kui, Fang Jian-Hui. Two types of conserved quantities of Lie-Mei symmetry for a variable mass system in phase space. Acta Physica Sinica, 2008, 57(11): 6699-6703. doi: 10.7498/aps.57.6699
    [11] Xia Li-Li, Li Yuan-Cheng. Perturbation to symmetries and adiabatic invariant for nonholonomic controllable mechanical system in phase place. Acta Physica Sinica, 2007, 56(11): 6183-6187. doi: 10.7498/aps.56.6183
    [12] Zhang Yi. Perturbation of symmetries and Hojman adiabatic invariants of discrete mechanical systems in the phase space. Acta Physica Sinica, 2007, 56(4): 1855-1859. doi: 10.7498/aps.56.1855
    [13] Yuan Tong-Quan. A family quasi-distribution function representation in phase space. Acta Physica Sinica, 2006, 55(10): 5014-5017. doi: 10.7498/aps.55.5014
    [14] Fang Jian-Hui, Wang Peng, Ding Ning. Lie-Mei symmetry of mechanical system in phase space. Acta Physica Sinica, 2006, 55(8): 3821-3824. doi: 10.7498/aps.55.3821
    [15] Zhang Yi. Symmetries and conserved quantities of mechanical systems with unilateral holonomic constraints in phase space. Acta Physica Sinica, 2005, 54(10): 4488-4495. doi: 10.7498/aps.54.4488
    [16] Fang Jian-Hui, Liao Yong-Pan, Peng Yong. Tow kinds of Mei symmeties and conserved quantities of a mechanical system in phase space. Acta Physica Sinica, 2005, 54(2): 500-503. doi: 10.7498/aps.54.500
    [17] Lou Zhi-Mei. Form invariance of second-order linear nonholonomic systems in phase space. Acta Physica Sinica, 2004, 53(7): 2046-2049. doi: 10.7498/aps.53.2046
    [18] Fang Jian-Hui, Zhang Peng-Yu. The conserved quantity of Hojman for mechanicalsystems with variable mass in phase space. Acta Physica Sinica, 2004, 53(12): 4041-4044. doi: 10.7498/aps.53.4041
    [19] Chen Pei-Sheng, Fang Jian-Hui. Form invariance of nonconservative nonholonomic systems in the phase space. Acta Physica Sinica, 2003, 52(5): 1044-1047. doi: 10.7498/aps.52.1044
    [20] Liu Hai-Feng, Dai Zheng-Hua, Chen Feng, Gong Xin, Yu Zun-Hong. . Acta Physica Sinica, 2002, 51(6): 1186-1192. doi: 10.7498/aps.51.1186
Metrics
  • Abstract views:  6059
  • PDF Downloads:  215
  • Cited By: 0
Publishing process
  • Received Date:  24 November 2016
  • Accepted Date:  26 March 2017
  • Published Online:  05 June 2017

/

返回文章
返回
Baidu
map