[1] |
Li Rong-Feng, Gao Shu-Chao, Xiao Chao-Fan, Xu Zhi-Yi, Xue Xing-Tai, Liu Jian-Bo, Zhao Yan-Ying, Chen Jia-Er, Lu Hai-Yang, Yan Xue-Qing. Generation of ultrafast broadband small angle hundreds MeV electron bunches from laser wakefield acceleration. Acta Physica Sinica,
2017, 66(15): 154101.
doi: 10.7498/aps.66.154101
|
[2] |
Yao Hai-Yang, Wang Hai-Yan, Zhang Zhi-Chen, Shen Xiao-Hong. A method of detecting underwater weak target based on generalized Duffing oscillator. Acta Physica Sinica,
2017, 66(12): 124302.
doi: 10.7498/aps.66.124302
|
[3] |
Fan Hong-Yi, Liang Zu-Feng. An integral-transformation corresponding to quantum mechanical fundamental commutative relation and its application in deriving Wigner function. Acta Physica Sinica,
2015, 64(5): 050301.
doi: 10.7498/aps.64.050301
|
[4] |
Zhou Jie, Yang Shuang-Bo. Multifractal behaviors of the wave function for the periodically kicked free top. Acta Physica Sinica,
2015, 64(20): 200505.
doi: 10.7498/aps.64.200505
|
[5] |
Wang Ting-Zhi, Sun Xian-Ting, Han Yue-Lin. Conformal invariance and conserved quantity of relative motion holonomic dynamical system in phase space. Acta Physica Sinica,
2014, 63(10): 104502.
doi: 10.7498/aps.63.104502
|
[6] |
Zhou Jie, Yang Shuang-Bo. Wave function fractal dimensions for the periodically kicked free top. Acta Physica Sinica,
2014, 63(22): 220507.
doi: 10.7498/aps.63.220507
|
[7] |
Fan Hong-Yi. Bivariate normal distribution of coherent state in parameterized phase space. Acta Physica Sinica,
2014, 63(2): 020302.
doi: 10.7498/aps.63.020302
|
[8] |
Xu Xue-Xiang, Zhang Ying-Kong, Zhang Hao-Liang, Chen Yuan-Yuan. Wigner function of N00N state and quantum interference with N00N state as input. Acta Physica Sinica,
2013, 62(11): 114204.
doi: 10.7498/aps.62.114204
|
[9] |
Lu Kai, Fang Jian-Hui, Zhang Ming-Jiang, Wang Peng. Noether symmetry and Mei symmetry of discrete holonomic system in phase space. Acta Physica Sinica,
2009, 58(11): 7421-7425.
doi: 10.7498/aps.58.7421
|
[10] |
Liu Yang-Kui, Fang Jian-Hui. Two types of conserved quantities of Lie-Mei symmetry for a variable mass system in phase space. Acta Physica Sinica,
2008, 57(11): 6699-6703.
doi: 10.7498/aps.57.6699
|
[11] |
Zhang Yi. Perturbation of symmetries and Hojman adiabatic invariants of discrete mechanical systems in the phase space. Acta Physica Sinica,
2007, 56(4): 1855-1859.
doi: 10.7498/aps.56.1855
|
[12] |
Xia Li-Li, Li Yuan-Cheng. Perturbation to symmetries and adiabatic invariant for nonholonomic controllable mechanical system in phase place. Acta Physica Sinica,
2007, 56(11): 6183-6187.
doi: 10.7498/aps.56.6183
|
[13] |
Fang Jian-Hui, Wang Peng, Ding Ning. Lie-Mei symmetry of mechanical system in phase space. Acta Physica Sinica,
2006, 55(8): 3821-3824.
doi: 10.7498/aps.55.3821
|
[14] |
Zhang Yi. Symmetries and conserved quantities of mechanical systems with unilateral holonomic constraints in phase space. Acta Physica Sinica,
2005, 54(10): 4488-4495.
doi: 10.7498/aps.54.4488
|
[15] |
Fang Jian-Hui, Liao Yong-Pan, Peng Yong. Tow kinds of Mei symmeties and conserved quantities of a mechanical system in phase space. Acta Physica Sinica,
2005, 54(2): 500-503.
doi: 10.7498/aps.54.500
|
[16] |
Wu Ping, Lü Bai-Da, Chen Tian-Lu. Fractional Fourier transform of beams in the use of the Wigner distribution function method. Acta Physica Sinica,
2005, 54(2): 658-664.
doi: 10.7498/aps.54.658
|
[17] |
Lou Zhi-Mei. Form invariance of second-order linear nonholonomic systems in phase space. Acta Physica Sinica,
2004, 53(7): 2046-2049.
doi: 10.7498/aps.53.2046
|
[18] |
Fang Jian-Hui, Zhang Peng-Yu. The conserved quantity of Hojman for mechanicalsystems with variable mass in phase space. Acta Physica Sinica,
2004, 53(12): 4041-4044.
doi: 10.7498/aps.53.4041
|
[19] |
Chen Pei-Sheng, Fang Jian-Hui. Form invariance of nonconservative nonholonomic systems in the phase space. Acta Physica Sinica,
2003, 52(5): 1044-1047.
doi: 10.7498/aps.52.1044
|
[20] |
Liu Hai-Feng, Dai Zheng-Hua, Chen Feng, Gong Xin, Yu Zun-Hong. . Acta Physica Sinica,
2002, 51(6): 1186-1192.
doi: 10.7498/aps.51.1186
|