Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Video saliency detection algorithm based on biological visual feature and visual psychology theory

Fang Zhi-Ming Cui Rong-Yi Jin Jing-Xuan

Citation:

Video saliency detection algorithm based on biological visual feature and visual psychology theory

Fang Zhi-Ming, Cui Rong-Yi, Jin Jing-Xuan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In order to solve the problems of video saliency detection and poor fusion effect, a video saliency detection model and a fusion model are proposed. Video saliency detection is divided into spatial saliency detection and temporal saliency detection. In the spatial domain, inspired by the properties of visual cortex hierarchical perception and the Gestalt visual psychology, we propose a hierarchical saliency detection model with three-layer architecture for single frame image. The video single frame is simplified layer by layer, then the results are combined to form a whole consciousness vision object and become easier to deal with. At the bottom of the model, candidate saliency regions are formed by nonlinear simplification model of the characteristic image (dual color characteristic and luminance characteristic image), which is in accordance with the biological visual characteristic. In the middle of the model, the candidate regions with the strongest competitiveness are selected as the local salient regions according to the property of matrix minimum Fresenius- norm (F- norm). At the top level of the model, the local salient regions are integrated by the core theory of Gestalt visual psychology, and the spatial saliency map is obtained. In the time domain, based on the consistency assumption of a moving object in target location, motion range and direction, the optical flow points detected by Lucas-Kanade method are classified to eliminate the noise interference, then the motion saliency of moving object is measured by the motion amplitude. Finally, based on the difference between the visual sensitivity of dynamic and static information and the difference in visual sensitivity between color information and gray information, a general fusion model of time and spatial domain salient region is proposed. The saliency detection results of single frame image and video sequence frame image are represented by the gray color model and the Munsell color system respectively. Experimental results show that the proposed saliency detection method can suppress the background noise, solve the sparse pixels problem of a moving object, and can effectively detect the salient regions from the video. The proposed fusion model can display two kinds of saliency results simultaneously in a single picture of a complex scene. This model ensures that the detection results of images are so complicated that a chaotic situation will not appear.
      Corresponding author: Jin Jing-Xuan, 1537161104@qq.com
    • Funds: Project supported by the Science and Technology Development Plan Foundation of Jilin Province, China (Grant No. 20140101186JC).
    [1]

    Borji A, Sihite D N, Itti L 2015 IEEE Trans. Image Process. 24 5706

    [2]

    Cichy R M, Pantazis D, Oliva A 2016 Cerebral Cortex 26 3563

    [3]

    Li Z C, Qin S Y, Itti L 2011 Image Vision Comput. 29 1

    [4]

    Wu G L, Fu Y J, Huang S C, Chen S Y 2013 IEEE Trans. Image Process. 22 2247

    [5]

    Franke U, Pfeiffer D, Rabe C, Knoeppel C, Enzweiler M, Stein F, Herrtwich R 2013 Proceedings of IEEE Conference on Computer Vision Sydney, Australia, December 1-8, 2013 p214

    [6]

    Ma Y F, Hua X S, Lu L, Zhang H J 2005 IEEE Trans. Multimed. 7 907

    [7]

    Ejaz N, Mehmood I, Baik S W 2014 Comput. Elec. Engr. 40 993

    [8]

    Evangelopoulos G, Zlatintsi A, Potamianos A, Maragos P 2013 IEEE Trans. Multimed. 15 1553

    [9]

    Itti L, Koch C, Niebur E 1998 IEEE Trans. Pattern Anal. Mach. Intell. 20 1254

    [10]

    Itti L, Koch C 2001 Nat. Rev. Neurosci. 2 194

    [11]

    Cheng M M, Zhang G X, Mitra N J, Huang X, Hu S M 2011 Proceedings of Computer Vision and Pattern Recognition Colorado Springs, November 15-18, 2011 p409

    [12]

    Liu J, Wang S 2015 Neurocomputing 147 435

    [13]

    Guo C, Ma Q, Zhang L 2008 Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition Anchorage, Alaska, January 17-18, 2008 p1

    [14]

    Hou X D, Zhang L Q 2007 Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition Minneapolis, Minnesota, June 19-21, 2007 p18

    [15]

    Zhu Z, Wang M 2016 J. Comput. Appl. 36 2560

    [16]

    Tao D, Cheng J, Song M 2016 IEEE Trans. Neur. Netw. Lear. Syst. 27 1122

    [17]

    Xue Y W, Guo X J, Cao X C 2012 Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing Kyoto, Japan, March 25-30, 2012 p1485

    [18]

    Ma Z M, Tao C K 1999 Acta Phys. Sin. 48 2202 (in Chinese) [马兆勉, 陶纯堪 1999 48 2202]

    [19]

    Jin Z L, Han J, Zhang Y, Bo L F 2014 Acta Phys. Sin. 63 069501 (in Chinese) [金左轮, 韩静, 张毅, 柏连发 2014 63 069501]

    [20]

    Wu Y Q, Zhang J K 2010 Acta Phys. Sin. 59 5487 (in Chinese) [吴一全, 张金矿 2010 59 5487]

    [21]

    Xu Y N, Zhao Y, Liu L P, Zhang Y, Sun X D 2010 Acta Phys. Sin. 59 980 (in Chinese) [许元男, 赵远, 刘丽萍, 张宇, 孙秀冬 2010 59 980]

    [22]

    Wang X, Ma H, Chen X 2016 Proceedings of International Conference on Image Processing the Phoenix Convention Centre, Phoenix, Arizona, USA, September, 2016 p25

    [23]

    He S, Lau R W, Liu W 2015 Int. J. Comput. Vision 115 330

    [24]

    Li H, Chen J, Lu H 2017 Neurocomputing 226 212

    [25]

    Huang Y 2016 M. S. Thesis (Beijing: Institute of Optoelectronic Technology) [黄烨2016 硕士学位论文 (北京: 中国科学院)]

    [26]

    Paragios N, Deriche R 2000 IEEE Trans. Pattern Anal. Mach. Intell. 22 266

    [27]

    Tsai D M, Lai S C 2009 IEEE Trans. Image Process. 18 158

    [28]

    Barron J L, Fleet D, Beauchemin S S 1994 Int. J. Comput. Vision 12 43

    [29]

    Elazary L, Itti L 2008 J. Vision 8

    [30]

    Lucas B D, Kanade T 1981 Proceedings of International Joint Conference on Artificial Intelligence Vancouver, BC, Canada, August, 1981 285

    [31]

    Baker S, Scharstein D, Lewis J P, Roth S, Black M J, Szelisk R 2007 Proceedings of IEEE International Conference on Computer Vision Rio de Janeiro, Brazil, October 14-21, 2007 p92

    [32]

    Koffka K 1935 Principles of Gestalt Psychology (London: Lund Humphries)

    [33]

    Mullen K T 1985 J. Phys. 359 381

    [34]

    Gary B, Adrian K 2008 Learning OpenCV (America: O'Reilly Media) pp356-370

    [35]

    Shi J, Yan Q, Xu L, Jia J 2016 IEEE Trans. Pattern Anal. Mach. Intell. 38 1

    [36]

    Li X, Li Y, Shen C H, Dick A, Hengel 2013 Proceedings of Computer Vision Sydney, NSW, Australia, December 8, 2013 p3328

  • [1]

    Borji A, Sihite D N, Itti L 2015 IEEE Trans. Image Process. 24 5706

    [2]

    Cichy R M, Pantazis D, Oliva A 2016 Cerebral Cortex 26 3563

    [3]

    Li Z C, Qin S Y, Itti L 2011 Image Vision Comput. 29 1

    [4]

    Wu G L, Fu Y J, Huang S C, Chen S Y 2013 IEEE Trans. Image Process. 22 2247

    [5]

    Franke U, Pfeiffer D, Rabe C, Knoeppel C, Enzweiler M, Stein F, Herrtwich R 2013 Proceedings of IEEE Conference on Computer Vision Sydney, Australia, December 1-8, 2013 p214

    [6]

    Ma Y F, Hua X S, Lu L, Zhang H J 2005 IEEE Trans. Multimed. 7 907

    [7]

    Ejaz N, Mehmood I, Baik S W 2014 Comput. Elec. Engr. 40 993

    [8]

    Evangelopoulos G, Zlatintsi A, Potamianos A, Maragos P 2013 IEEE Trans. Multimed. 15 1553

    [9]

    Itti L, Koch C, Niebur E 1998 IEEE Trans. Pattern Anal. Mach. Intell. 20 1254

    [10]

    Itti L, Koch C 2001 Nat. Rev. Neurosci. 2 194

    [11]

    Cheng M M, Zhang G X, Mitra N J, Huang X, Hu S M 2011 Proceedings of Computer Vision and Pattern Recognition Colorado Springs, November 15-18, 2011 p409

    [12]

    Liu J, Wang S 2015 Neurocomputing 147 435

    [13]

    Guo C, Ma Q, Zhang L 2008 Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition Anchorage, Alaska, January 17-18, 2008 p1

    [14]

    Hou X D, Zhang L Q 2007 Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition Minneapolis, Minnesota, June 19-21, 2007 p18

    [15]

    Zhu Z, Wang M 2016 J. Comput. Appl. 36 2560

    [16]

    Tao D, Cheng J, Song M 2016 IEEE Trans. Neur. Netw. Lear. Syst. 27 1122

    [17]

    Xue Y W, Guo X J, Cao X C 2012 Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing Kyoto, Japan, March 25-30, 2012 p1485

    [18]

    Ma Z M, Tao C K 1999 Acta Phys. Sin. 48 2202 (in Chinese) [马兆勉, 陶纯堪 1999 48 2202]

    [19]

    Jin Z L, Han J, Zhang Y, Bo L F 2014 Acta Phys. Sin. 63 069501 (in Chinese) [金左轮, 韩静, 张毅, 柏连发 2014 63 069501]

    [20]

    Wu Y Q, Zhang J K 2010 Acta Phys. Sin. 59 5487 (in Chinese) [吴一全, 张金矿 2010 59 5487]

    [21]

    Xu Y N, Zhao Y, Liu L P, Zhang Y, Sun X D 2010 Acta Phys. Sin. 59 980 (in Chinese) [许元男, 赵远, 刘丽萍, 张宇, 孙秀冬 2010 59 980]

    [22]

    Wang X, Ma H, Chen X 2016 Proceedings of International Conference on Image Processing the Phoenix Convention Centre, Phoenix, Arizona, USA, September, 2016 p25

    [23]

    He S, Lau R W, Liu W 2015 Int. J. Comput. Vision 115 330

    [24]

    Li H, Chen J, Lu H 2017 Neurocomputing 226 212

    [25]

    Huang Y 2016 M. S. Thesis (Beijing: Institute of Optoelectronic Technology) [黄烨2016 硕士学位论文 (北京: 中国科学院)]

    [26]

    Paragios N, Deriche R 2000 IEEE Trans. Pattern Anal. Mach. Intell. 22 266

    [27]

    Tsai D M, Lai S C 2009 IEEE Trans. Image Process. 18 158

    [28]

    Barron J L, Fleet D, Beauchemin S S 1994 Int. J. Comput. Vision 12 43

    [29]

    Elazary L, Itti L 2008 J. Vision 8

    [30]

    Lucas B D, Kanade T 1981 Proceedings of International Joint Conference on Artificial Intelligence Vancouver, BC, Canada, August, 1981 285

    [31]

    Baker S, Scharstein D, Lewis J P, Roth S, Black M J, Szelisk R 2007 Proceedings of IEEE International Conference on Computer Vision Rio de Janeiro, Brazil, October 14-21, 2007 p92

    [32]

    Koffka K 1935 Principles of Gestalt Psychology (London: Lund Humphries)

    [33]

    Mullen K T 1985 J. Phys. 359 381

    [34]

    Gary B, Adrian K 2008 Learning OpenCV (America: O'Reilly Media) pp356-370

    [35]

    Shi J, Yan Q, Xu L, Jia J 2016 IEEE Trans. Pattern Anal. Mach. Intell. 38 1

    [36]

    Li X, Li Y, Shen C H, Dick A, Hengel 2013 Proceedings of Computer Vision Sydney, NSW, Australia, December 8, 2013 p3328

  • [1] Long Kang, Kong Ming, Liu Lu, Liu Wei, Hua Hang-Bo, Xu Xin-Ke. Laser frequency scanning interference nonlinear correction method based on Lomb-Scargle algorithm. Acta Physica Sinica, 2023, 72(3): 034205. doi: 10.7498/aps.72.20221754
    [2] Hua Hong-Tao, Lu Bo, Gu Hua-Guang. Nonlinear mechanism of excitatory autapse-induced reduction or enhancement of firing frequency of neuronal bursting. Acta Physica Sinica, 2020, 69(9): 090502. doi: 10.7498/aps.69.20191709
    [3] Jiang Tao, Huang Jin-Jing, Lu Lin-Guang, Ren Jin-Lian. Numerical study of nonlinear Schrödinger equation with high-order split-step corrected smoothed particle hydrodynamics method. Acta Physica Sinica, 2019, 68(9): 090203. doi: 10.7498/aps.68.20190169
    [4] Miao Pei-Xian, Yang Shi-Yu, Wang Jian-Xiang, Lian Ji-Qing, Tu Jian-Hui, Yang Wei, Cui Jing-Zhong. Rubidium atomic magnetometer based on pump-probe nonlinear magneto-optical rotation. Acta Physica Sinica, 2017, 66(16): 160701. doi: 10.7498/aps.66.160701
    [5] Liu Qun-Qun, He Wen-Ping, Gu Bin. Application of nonlinear dynamical methods in abrupt climate change detection. Acta Physica Sinica, 2015, 64(17): 179201. doi: 10.7498/aps.64.179201
    [6] Jin Yan-Fei, Li Bei. Stochastic resonance in a piecewise nonlinear system driven by colored correlated additive and multiplicative colored noises. Acta Physica Sinica, 2014, 63(21): 210501. doi: 10.7498/aps.63.210501
    [7] Zhang Shi-Gong, Wu Xian-Mei, Zhang Bi-Xing. Theory and method for nonlinear acoustics detection based on hysteretic stress-strain relation. Acta Physica Sinica, 2014, 63(19): 194302. doi: 10.7498/aps.63.194302
    [8] Jin Zuo-Lun, Han Jing, Zhang Yi, Bai Lian-Fa. Low light level image target detection based on texture saliency. Acta Physica Sinica, 2014, 63(6): 069501. doi: 10.7498/aps.63.069501
    [9] Liu Hong-Chen, Li Fei, Yang Shuang. Study on nonlinear phenomena in single phase H bridge inverter based on the periodic spread spectrum. Acta Physica Sinica, 2013, 62(11): 110504. doi: 10.7498/aps.62.110504
    [10] Wang Ping, Pan Yue. Severe hail identification model based on saliency characteristics. Acta Physica Sinica, 2013, 62(6): 069202. doi: 10.7498/aps.62.069202
    [11] Ning Fang-Li, Dong Liang, Zhang Wen-Zhi, Wang Kang. A finite volume algorithm for solving nonlinear standing waves in acoustic resonators. Acta Physica Sinica, 2012, 61(19): 190203. doi: 10.7498/aps.61.190203
    [12] Liu Tie-Lin, Zhai Zhong-Hai, Hou Xiang-Lin. Study and application of optimization algorithm about nonlinear partial differential equations with boundary value problem. Acta Physica Sinica, 2011, 60(9): 090202. doi: 10.7498/aps.60.090202
    [13] Guo Liu-Xiao, Xu Zhen-Yuan. The existence of two types of generalized synchronization of nonlinear systems. Acta Physica Sinica, 2008, 57(10): 6086-6092. doi: 10.7498/aps.57.6086
    [14] Gong Zhi-Qiang, Feng Guo-Lin. Analysis of similarity of several proxy series based on nonlinear analysis method. Acta Physica Sinica, 2007, 56(6): 3619-3629. doi: 10.7498/aps.56.3619
    [15] Zhang Zheng-Wei, Fan Yang-Yu, Zeng Li. A nonlinear hybrid method for detecting the frequency of unknown weak composite periodic signal. Acta Physica Sinica, 2006, 55(10): 5115-5121. doi: 10.7498/aps.55.5115
    [16] Gong Zhi-Qiang, Feng Guo-Lin, Dong Wen-Jie, Li Jian-Ping. The research of dynamic structure abrupt change of nonlinear time series. Acta Physica Sinica, 2006, 55(6): 3180-3187. doi: 10.7498/aps.55.3180
    [17] Tian Xiao-Dong, Yue Rui-Hong. Integrability of the generalized multi-component Fermi quantum derivative nonlin ear Schrdinger model. Acta Physica Sinica, 2005, 54(4): 1485-1489. doi: 10.7498/aps.54.1485
    [18] JING HUI, SHI QING-YUN. INTEGRAL TRANSFORMATION WITH CHANGEABLE COEFFICIENT AND LANDAU SYSTEMS IN THE FRAMEWORK OF NONLINEAR-SUPERSYMMETRY METHOD. Acta Physica Sinica, 1999, 48(9): 1581-1586. doi: 10.7498/aps.48.1581
    [19] XU YUN, ZHANG JIAN-XIA, DU SHI-PEI. THE JUMP STOCHASTICITY CHARACTERISTICS OF NONLI-NER FUNCTION IN THE DYNAMIC SYSTEM. Acta Physica Sinica, 1991, 40(1): 33-38. doi: 10.7498/aps.40.33
    [20] SUN ZHONG-QI, JIANG FANG-XING. SIMPLIFIED ELASTIC DIPOLE MODEL OF NONLINEAR STRESS-INDUCED DIFFUSION OF INTERSTITIALS. Acta Physica Sinica, 1989, 38(10): 1679-1686. doi: 10.7498/aps.38.1679
Metrics
  • Abstract views:  5780
  • PDF Downloads:  303
  • Cited By: 0
Publishing process
  • Received Date:  18 November 2016
  • Accepted Date:  18 February 2017
  • Published Online:  05 May 2017

/

返回文章
返回
Baidu
map