Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical improvement on the determination of effective elasticity charges for charged colloidal particles

Wang Lin-Wei Xu Sheng-Hua Zhou Hong-Wei Sun Zhi-Wei Ouyang Wen-Ze Xu Feng

Citation:

Theoretical improvement on the determination of effective elasticity charges for charged colloidal particles

Wang Lin-Wei, Xu Sheng-Hua, Zhou Hong-Wei, Sun Zhi-Wei, Ouyang Wen-Ze, Xu Feng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • According to the existing shear modulus-pair potential relationship model for colloidal crystal comprised of highly charged colloidal particles, the calculated shear moduli of colloidal crystals are much larger than the measured values by the torsional resonance spectroscopy (TRS). Moreover, by using the relationship model, the effective surface charge of colloidal particles, obtained by fitting values of shear moduli measured by TRS (effective elasticity charge), is smaller than that obtained through the experimental method of conductivity-number density relationship (effectively transported charge). So far there has been no practical explanation to this discrepancy. Our analysis shows that this discrepancy is because the existing relationship model is for the perfect crystals and does not include the defects such as voids which can result in the decrease of mechanical properties of materials. The existing shear modulus-pair potential model will be improved by introducing the effect of voids, which is inspired from the Gibson-Ashby model in the study of cellular solid. The Yukawa potential, which considers Coulomb repulsions between colloidal particles and is usually used in the model expressions, will be substituted by Sogami-Ise potential, which considers a long-range attraction in addition to that Coulomb repulsions and accepts the existence of voids inside the colloidal crystals. For five different kinds of highly charged colloidal particles, the shear moduli with different volume fractions are measured by TRS. Then the fitted effective surface charges using the original and improved model respectively are compared with each other. It can be concluded that the effective elastic charge obtained by the improved model is more suitable and much closer to the renormalized charge obtained from Alexander's method. It is also clear that neither the effectively transported charge nor the Alexander's renormalized charge can be used to evaluate the shear moduli of colloidal crystals with voids inside. These results can also let us further understand and use the effective surface charge in the colloid studies.
      Corresponding author: Wang Lin-Wei, wanglinwei@outlook.com;xush@imech.ac.cn ; Xu Sheng-Hua, wanglinwei@outlook.com;xush@imech.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11302226, 11572322, 11672295).
    [1]

    Denton A R 2010 J. Phys.-Condens. Matter 22 364108

    [2]

    Zhou H W, Mi L, Liu L X, Xu S H, Sun Z W 2013 Acta Phys. Sin. 62 134704 (in Chinese) [周宏伟, 米利, 刘丽霞, 徐升华, 孙祉伟 2013 62 134704]

    [3]

    Alexander S, Chaikin P M, Grant P, Morales G J, Pincus P, Hone D 1984 J. Chem. Phys. 80 5776

    [4]

    Grosse C, Shilov V N 2000 J. Colloid Interf. Sci. 225 340

    [5]

    Palberg T, Schweinfurth H, Kller T, Mller H, Schpe H J, Reinmller A 2013 Eur. Phys. J.-Spec. Top. 222 2835

    [6]

    Ito K, Sumaru K, Ise N 1992 Phys. Rev. B 46 3105

    [7]

    Ouyang W, Zhou H, Xu S, Sun Z 2014 Colloid. Surface A 441 598

    [8]

    Zhou H, Xu S, Ouyang W, Sun Z, Liu L 2013 J. Chem. Phys. 139 064904

    [9]

    Gong Y K, Nakashima K, Xu R 2001 Langmuir 17 2889

    [10]

    Belloni L 1998 Colloid. Surface A 140 227

    [11]

    Wette P, Schpe H J, Palberg T 2002 J. Chem. Phys. 116 10981

    [12]

    Shapran L, Medebach M, Wette P, Palberg T, Schpe H J, Horbach J, Kreer T, Chatterji A 2005 Colloid. Surface A 270-271 220

    [13]

    Wette P, Schpe H J, Palberg T 2003 Colloid. Surface A 222 311

    [14]

    Dubois-Violette E, Pieranski P, Rothen F, Strzelecki L 1980 J. Phys. France 41 369

    [15]

    Joanny J F 1979 J. Colloid Interf. Sci. 71 622

    [16]

    Yoshida H, Ito K, Ise N 1991 Phys. Rev. B 44 435

    [17]

    Zhou H, Xu S, Sun Z, Du X, Liu L 2011 Langmuir 27 7439

    [18]

    Zhou H, Xu S, Sun Z, Zhu R 2015 J. Chem. Phys. 143 144903

    [19]

    Hashin Z, Shtrikman 1962 J. Mech. Phys. Solids 10 343

    [20]

    Zeller R, Dederichs P 1973 Phys. Status Solidi B 55 831

    [21]

    Anderson V J, Terentjev E M, Meeker S P 2001 Eur. Phys. J. E 4 11

    [22]

    Anderson V J, Terentjev E M 2001 Eur. Phys. J. E 4 21

    [23]

    Ashby M F, Medalist R F M 1983 Metall. Trans. A 14 1755

    [24]

    Nieh T, Kinney J, Wadsworth J, Ladd A 1998 Scripta Mater. 38 1487

    [25]

    Ise N, Konishi T, Tata B V R 1999 Langmuir 15 4176

    [26]

    Stevens M J, Falk M L, Robbins M O 1996 J. Chem. Phys. 104 5209

    [27]

    Tata B V R, Ise N 1996 Phys. Rev. B 54 6050

    [28]

    Sogami I, Ise N 1984 J. Chem. Phys. 81 6320

    [29]

    Wang Q, Fu S, Yu T 1994 Prog. Polym. Sci. 19 703

    [30]

    Du X, Xu S H, Sun Z W, Liu L 2012 Chin. J. Chem. Phys. 25 318

    [31]

    Shouldice G T D, Vandezande G A, Rudin A 1994 Eur. Polym. J. 30 179

    [32]

    Goldburg W I 1999 Am. J. Phys. 67 1152

    [33]

    Xiong B, Pallandre A, le Potier I, Audebert P, Fattal E, Tsapis N, Barratt G, Taverna M 2012 Anal. Methods 4 183

    [34]

    Qin Y M, Zhou H W, Xu S H, Sun Z W 2015 Chem. J. Chinese Univ. 36 310 (in Chinese) [秦艳铭, 周宏伟, 徐升华, 孙祉伟 2015 高等学校化学学报 36 310]

    [35]

    Trizac E, Bocquet L, Aubouy M, von Grnberg H H 2003 Langmuir 19 4027

    [36]

    Hessinger D, Evers M, Palberg T 2000 Phys. Rev. E 61 5493

    [37]

    Joanicot M, Jorand M, Pieranski P, Rothen F 1984 J. Phys. France 45 1413

  • [1]

    Denton A R 2010 J. Phys.-Condens. Matter 22 364108

    [2]

    Zhou H W, Mi L, Liu L X, Xu S H, Sun Z W 2013 Acta Phys. Sin. 62 134704 (in Chinese) [周宏伟, 米利, 刘丽霞, 徐升华, 孙祉伟 2013 62 134704]

    [3]

    Alexander S, Chaikin P M, Grant P, Morales G J, Pincus P, Hone D 1984 J. Chem. Phys. 80 5776

    [4]

    Grosse C, Shilov V N 2000 J. Colloid Interf. Sci. 225 340

    [5]

    Palberg T, Schweinfurth H, Kller T, Mller H, Schpe H J, Reinmller A 2013 Eur. Phys. J.-Spec. Top. 222 2835

    [6]

    Ito K, Sumaru K, Ise N 1992 Phys. Rev. B 46 3105

    [7]

    Ouyang W, Zhou H, Xu S, Sun Z 2014 Colloid. Surface A 441 598

    [8]

    Zhou H, Xu S, Ouyang W, Sun Z, Liu L 2013 J. Chem. Phys. 139 064904

    [9]

    Gong Y K, Nakashima K, Xu R 2001 Langmuir 17 2889

    [10]

    Belloni L 1998 Colloid. Surface A 140 227

    [11]

    Wette P, Schpe H J, Palberg T 2002 J. Chem. Phys. 116 10981

    [12]

    Shapran L, Medebach M, Wette P, Palberg T, Schpe H J, Horbach J, Kreer T, Chatterji A 2005 Colloid. Surface A 270-271 220

    [13]

    Wette P, Schpe H J, Palberg T 2003 Colloid. Surface A 222 311

    [14]

    Dubois-Violette E, Pieranski P, Rothen F, Strzelecki L 1980 J. Phys. France 41 369

    [15]

    Joanny J F 1979 J. Colloid Interf. Sci. 71 622

    [16]

    Yoshida H, Ito K, Ise N 1991 Phys. Rev. B 44 435

    [17]

    Zhou H, Xu S, Sun Z, Du X, Liu L 2011 Langmuir 27 7439

    [18]

    Zhou H, Xu S, Sun Z, Zhu R 2015 J. Chem. Phys. 143 144903

    [19]

    Hashin Z, Shtrikman 1962 J. Mech. Phys. Solids 10 343

    [20]

    Zeller R, Dederichs P 1973 Phys. Status Solidi B 55 831

    [21]

    Anderson V J, Terentjev E M, Meeker S P 2001 Eur. Phys. J. E 4 11

    [22]

    Anderson V J, Terentjev E M 2001 Eur. Phys. J. E 4 21

    [23]

    Ashby M F, Medalist R F M 1983 Metall. Trans. A 14 1755

    [24]

    Nieh T, Kinney J, Wadsworth J, Ladd A 1998 Scripta Mater. 38 1487

    [25]

    Ise N, Konishi T, Tata B V R 1999 Langmuir 15 4176

    [26]

    Stevens M J, Falk M L, Robbins M O 1996 J. Chem. Phys. 104 5209

    [27]

    Tata B V R, Ise N 1996 Phys. Rev. B 54 6050

    [28]

    Sogami I, Ise N 1984 J. Chem. Phys. 81 6320

    [29]

    Wang Q, Fu S, Yu T 1994 Prog. Polym. Sci. 19 703

    [30]

    Du X, Xu S H, Sun Z W, Liu L 2012 Chin. J. Chem. Phys. 25 318

    [31]

    Shouldice G T D, Vandezande G A, Rudin A 1994 Eur. Polym. J. 30 179

    [32]

    Goldburg W I 1999 Am. J. Phys. 67 1152

    [33]

    Xiong B, Pallandre A, le Potier I, Audebert P, Fattal E, Tsapis N, Barratt G, Taverna M 2012 Anal. Methods 4 183

    [34]

    Qin Y M, Zhou H W, Xu S H, Sun Z W 2015 Chem. J. Chinese Univ. 36 310 (in Chinese) [秦艳铭, 周宏伟, 徐升华, 孙祉伟 2015 高等学校化学学报 36 310]

    [35]

    Trizac E, Bocquet L, Aubouy M, von Grnberg H H 2003 Langmuir 19 4027

    [36]

    Hessinger D, Evers M, Palberg T 2000 Phys. Rev. E 61 5493

    [37]

    Joanicot M, Jorand M, Pieranski P, Rothen F 1984 J. Phys. France 45 1413

  • [1] Cheng Da-Zhao, Liu Cai-Yan, Zhang Chao-Ran, Qu Jia-Hui, Zhang Jing. Phase field simulation of intra/intergranular pore morphology evolution in neutron-irradiated austenitic stainless steel. Acta Physica Sinica, 2024, 73(22): 224601. doi: 10.7498/aps.73.20241353
    [2] Zhao Xiao-An, Xu Sheng-Hua, Zhou Hong-Wei, Sun Zhi-Wei. Effect of electrolyte concentration on effective surface charge of colloidal particles. Acta Physica Sinica, 2021, 70(5): 056402. doi: 10.7498/aps.70.20201472
    [3] Cheng Yi-Ting, Andrey S. Makarov, Gennadii V. Afonin, Vitaly A. Khonik, Qiao Ji-Chao. Evolution of defect concentration in Zr50–xCu34Ag8Al8Pdx (x = 0, 2) amorphous alloys derived using shear modulus and calorimetric data. Acta Physica Sinica, 2021, 70(14): 146401. doi: 10.7498/aps.70.20210256
    [4] Zhou Xian-Ming, Zhao Yong-Tao, Cheng Rui, Lei Yu, Wang Yu-Yu, Ren Jie-Ru, Liu Shi-Dong, Mei Ce-Xiang, Chen Xi-Meng, Xiao Guo-Qing. Vanadium K-shell X-ray emission induced by xenon ions at near the Bohr velocity. Acta Physica Sinica, 2016, 65(2): 027901. doi: 10.7498/aps.65.027901
    [5] Chen Shu-Ying, Wang Hai-Dou, Ma Guo-Zheng, Kang Jia-Jie, Xu Bin-Shi. Fractal and statistical properties of the geometrical structure of natural pores within plasma sprayed coatings. Acta Physica Sinica, 2015, 64(24): 240504. doi: 10.7498/aps.64.240504
    [6] Li Long, Wang Ming, Ni Hai-Bin, Shen Tian-Yi. Introduction of two-dimensional defects in inverse opal films by means of planar lithography and sol-gel co-assembly methods. Acta Physica Sinica, 2014, 63(5): 054206. doi: 10.7498/aps.63.054206
    [7] Li Xiao-Long, Lu Ying, Zhai Yong-Liang, Wu Lan-Sheng, Sun Wei, Hu Shu-Xin. Isotropic compression of colloidal crystal in electric field between plate electrode. Acta Physica Sinica, 2013, 62(17): 176105. doi: 10.7498/aps.62.176105
    [8] Ni Hai-Bin, Wang Ming, Chen Wei. Sol-gel co-assembly of inverse opal film and research on its optical properties. Acta Physica Sinica, 2012, 61(8): 084211. doi: 10.7498/aps.61.084211
    [9] Gu Ling-Yun, Xu Sheng-Hua, Sun Zhi-Wei. A Brownian dynamic simulation to verify the effective hard-sphere model criterion for the formation of charged colloidal crystals. Acta Physica Sinica, 2011, 60(12): 126402. doi: 10.7498/aps.60.126402
    [10] Sun Qi-Cheng, Zhang Guo-Hua, Wang Bo, Wang Guang-Qian. Shear modulus of semi-flexible networks in two dimensions. Acta Physica Sinica, 2009, 58(9): 6549-6553. doi: 10.7498/aps.58.6549
    [11] Hou Ri-Li, Peng Jian-Xiang, Jing Fu-Qian. A constitutive model for predicting shear modulus of metals using aluminum as the prototype. Acta Physica Sinica, 2009, 58(9): 6413-6418. doi: 10.7498/aps.58.6413
    [12] Liu Lei, Xu Sheng-Hua, Sun Zhi-Wei, Duan Li, Xie Jing-Chang, Lin Hai. An experimental study on colloidal crystals formed in two-component dispersion of charged particles. Acta Physica Sinica, 2008, 57(11): 7367-7373. doi: 10.7498/aps.57.7367
    [13] Du Qi-Zhen, Liu Lian-Lian, Sun Jing-Bo. Numerical modeling of seismic wavefield in anisotropic viscoelastic porous medium with the pseudo-spectral method. Acta Physica Sinica, 2007, 56(10): 6143-6149. doi: 10.7498/aps.56.6143
    [14] Feng Zeng-Chao, Zhao Yang-Sheng, Lü Zhao-Xing. Study on percolation law of 2D porous and fractured double-medium. Acta Physica Sinica, 2007, 56(5): 2796-2801. doi: 10.7498/aps.56.2796
    [15] Ran Xian-Wen, Tang Wen-Hui, Tan Hua, Dai Cheng-Da. High temperature high pressure constitutive relation of materials by considering fusion enthalpy. Acta Physica Sinica, 2006, 55(6): 2852-2855. doi: 10.7498/aps.55.2852
    [16] Liu Lei, Xu Sheng-Hua, Liu Jie, Duan Li, Sun Zhi-Wei, Liu Ren-Xiao, Dong Peng. Crystallization of charged colloidal particles: an experimental study. Acta Physica Sinica, 2006, 55(11): 6168-6174. doi: 10.7498/aps.55.6168
    [17] Wei Zhong-Chao, Dai Qiao-Feng, Wang He-Zhou. Spectral properties of fcc-like cylindrical colloidal crystals. Acta Physica Sinica, 2006, 55(2): 733-736. doi: 10.7498/aps.55.733
    [18] Peng Jian-Xiang, Jing Fu-Qian, Wang Li-Li, Li Da-Hong. Pressure and temperature dependence of shear modulus and yield strength for aluminum, copper and tungsten under shock compression. Acta Physica Sinica, 2005, 54(5): 2194-2197. doi: 10.7498/aps.54.2194
    [19] Hu Jian-Bo, Yu Yu-Ying, Dai Cheng-Da, Tan Hua. Shear modulus of aluminum under shock loading. Acta Physica Sinica, 2005, 54(12): 5750-5754. doi: 10.7498/aps.54.5750
    [20] HUA JING-SONG, JIN FU-QIAN, TAN HUA. A THEORETICAL METHOD TO OBTAIN THE SECOND ORDER PARTIAL DERIVATIVE OF SHEAR MODU LUS WITH RESPECT TO PRESSURE. Acta Physica Sinica, 2000, 49(12): 2443-2447. doi: 10.7498/aps.49.2443
Metrics
  • Abstract views:  6179
  • PDF Downloads:  173
  • Cited By: 0
Publishing process
  • Received Date:  22 November 2016
  • Accepted Date:  17 December 2016
  • Published Online:  05 March 2017

/

返回文章
返回
Baidu
map