Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Spreading and heat transfer characteristics of droplet on a heated substrate

Ye Xue-Min Li Yong-Kang Li Chun-Xi

Citation:

Spreading and heat transfer characteristics of droplet on a heated substrate

Ye Xue-Min, Li Yong-Kang, Li Chun-Xi
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The spreading characteristics of a droplet on a heated substrate have direct influences on its spreading area and heat transfer, so the exploration in this aspect is of important significance for cooling electronic and aerospace equipments. In the present paper, the evolution model of a droplet on a heated solid substrate is established based on the lubrication theory, and spreading processes are simulated respectively when the wall temperature is uniform and decreases exponentially from the center to both sides. A method of assessing the heat flux and heat transfer capacity of a two-dimensional liquid droplet is proposed. Influences of spreading characteristics and heat convective condition at the liquid-gas interface on heat transfer feature of the droplet are examined, and the results are in good agreement with the published ones in the literature. The simulated results show that in the case of uniform wall temperature, the evolution of the droplet is dominated mainly by gravity and illustrates symmetrical spreading characteristics, and the thickness profile presents a single-peak feature of which the value diminishes with time. The heat flux across the droplet surface decreases from both sides to the center, and the surface area of the droplet increases with time slightly, so the performance of heat transfer is strengthened to a certain extent. When the wall temperature decreases exponentially from the center to both sides, the spreading process of the droplet manifests three obvious stages, in which a single-peak feature of thickness profile gradually evolutes into a double-peak feature after surviving for a short period of time, and the peak values of the double-peak first increase firstly and then decrease, resulting from the complex game of gravity and thermocapillary force and their alternative dominance in the evolution. The variations of the dynamic contact angle and travelling speed of the contact line with time can also reflect the above characteristics. The heat flux in the center of the droplet increases, while its values at the double-peak and contact lines decrease with time. In addition, the heat flux at the contact line has a distinct jump feature compared with that at the adjacent position. The droplet surface area expands significantly with time, so the heat transfer capability is improved apparently. Enhancing heat convective condition at the liquid-gas interface, namely greater Biot number, slows the droplet spreading process, which inhibits the expansion of the droplet surface area. However, it enables the droplet to stay in a higher temperature region, resulting in the enhancement of heat dissipation of the droplet. Therefore, the comprehensive interactions of the above aspects strengthen the heat transfer capability, and this phenomenon tends to be increasingly significant over time. Greater Biot number delays the variations of the dynamic contact angle and the travelling speed of the contact line, without changing their general characteristics.
      Corresponding author: Ye Xue-Min, yexuemin@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11202079) and the Natural Science Foundation of Hebei Province, China (Grant No. A2015502058).
    [1]

    Zhirnov V V, Cavin R K, Hutchby J A 2003 P. IEEE 91 1934

    [2]

    Li T, Liu J 2004 J. Refrig. 03 22 (in Chinese)[李腾, 刘静2004制冷学报03 22]

    [3]

    Liang X Y 2012 M. S. Thesis (Hangzhou:Zhejiang University) (in Chinese)[梁雪艳2012硕士学位论文(杭州:浙江大学)]

    [4]

    Visaria M, Mudawar I 2008 Int. J. Heat Mass Transfer 51 5269

    [5]

    Zhang Z 2013 Ph. D. Dissertation (Beijing:Tsinghua University) (in Chinese)[张震2013博士学位论文(北京:清华大学)]

    [6]

    Gao S, Qu W, Yao W 2007 J. Eng. Therm. 28 221 (in Chinese)[高珊, 曲伟, 姚伟2007工程热 28 221]

    [7]

    Lee K S, Ivanova N, Starov V M, Hilal N, Dutschk V 2008 Adv. Colloid Interface Sci. 144 54

    [8]

    Pasandideh-Fard M, Aziz S D, Chandra S, Mostaghimi J 2001 Int. J. Heat Fluid Flow 22 201

    [9]

    Francois M, Shyy W 2002 Heat Transfer 03 401

    [10]

    Zhu W Y 2007 M. S. Thesis (Dalian:Dalian University of Technology) (in Chinese)[朱卫英2007硕士学位论文(大连:大连理工大学)]

    [11]

    Liu S S, Zhang C H, Zhang H B, Zhou J, He J G, Yin H Y 2013 Chin. Phys. B 22 106801

    [12]

    Karapetsas G, Matar O K, Valluri P, Sefiane K 2012 Langmuir 28 11433

    [13]

    Hu H B, Chen L B, Bao L Y, Huang S H 2014 Chin. Phys. B 23 074702

    [14]

    Xu W, Lan Z, Peng B L, Wen R F, Ma X H 2015 Acta Phys. Sin. 64 216801 (in Chinese)[徐威, 兰忠, 彭本利, 温荣福, 马学虎2015 64 216801]

    [15]

    Wang S L, Li C X, Ye X M 2011 Proc. CSEE. 31 63 (in Chinese)[王松岭, 李春曦, 叶学民2011中国电机工程学报31 63]

    [16]

    Li C X, Pei J J, Ye X M 2013 Acta Phys. Sin. 62 174702 (in Chinese)[李春曦, 裴建军, 叶学民2013 62 174702]

    [17]

    Cheng W L, Han F Y, Liu Q N, Zhao R, Fan H 2011 Energy 36 249

    [18]

    Karapetsas G, Sahu K C, Sefiane K, Matar O K 2014 Langmuir 30 4310

    [19]

    Cheng Y L, Ye X M, Yan W P 2002 J. North Chin. Electr. Power Univ. 29 50 (in Chinese)[程友良, 叶学民, 阎维平2002华北电力大学学报29 50]

    [20]

    Wang L, Huai X L, Tao Y J, Wang L 2010 J. Eng. Therm. 06 987 (in Chinese)[王磊, 淮秀兰, 陶毓伽, 王立2010工程热 06 987]

    [21]

    Karapetsas G, Sahu K C, Matar O K 2013 Langmuir 29 8892

    [22]

    Yuan Q, Huang X, Zhao Y P 2014 Phys. Fluids 26 092104

    [23]

    Yuan Q, Zhao Y P 2013 J. Fluid Mech. 716 171

    [24]

    Yuan Q, Zhao Y P 2013 Sci. Rep. 3 1944

    [25]

    Roux D C D, Cooper-White J J 2004 J. Colloid Interface. Sci. 277 424

    [26]

    Yang S M, Tao W S 2006 Heat Transfer (4th Ed.) (Beijing:Higher Education Press) pp37-38(in Chinese)[杨世铭, 陶文铨2006传热学(第4版) (北京:高等教育出版社)第37–38页]

  • [1]

    Zhirnov V V, Cavin R K, Hutchby J A 2003 P. IEEE 91 1934

    [2]

    Li T, Liu J 2004 J. Refrig. 03 22 (in Chinese)[李腾, 刘静2004制冷学报03 22]

    [3]

    Liang X Y 2012 M. S. Thesis (Hangzhou:Zhejiang University) (in Chinese)[梁雪艳2012硕士学位论文(杭州:浙江大学)]

    [4]

    Visaria M, Mudawar I 2008 Int. J. Heat Mass Transfer 51 5269

    [5]

    Zhang Z 2013 Ph. D. Dissertation (Beijing:Tsinghua University) (in Chinese)[张震2013博士学位论文(北京:清华大学)]

    [6]

    Gao S, Qu W, Yao W 2007 J. Eng. Therm. 28 221 (in Chinese)[高珊, 曲伟, 姚伟2007工程热 28 221]

    [7]

    Lee K S, Ivanova N, Starov V M, Hilal N, Dutschk V 2008 Adv. Colloid Interface Sci. 144 54

    [8]

    Pasandideh-Fard M, Aziz S D, Chandra S, Mostaghimi J 2001 Int. J. Heat Fluid Flow 22 201

    [9]

    Francois M, Shyy W 2002 Heat Transfer 03 401

    [10]

    Zhu W Y 2007 M. S. Thesis (Dalian:Dalian University of Technology) (in Chinese)[朱卫英2007硕士学位论文(大连:大连理工大学)]

    [11]

    Liu S S, Zhang C H, Zhang H B, Zhou J, He J G, Yin H Y 2013 Chin. Phys. B 22 106801

    [12]

    Karapetsas G, Matar O K, Valluri P, Sefiane K 2012 Langmuir 28 11433

    [13]

    Hu H B, Chen L B, Bao L Y, Huang S H 2014 Chin. Phys. B 23 074702

    [14]

    Xu W, Lan Z, Peng B L, Wen R F, Ma X H 2015 Acta Phys. Sin. 64 216801 (in Chinese)[徐威, 兰忠, 彭本利, 温荣福, 马学虎2015 64 216801]

    [15]

    Wang S L, Li C X, Ye X M 2011 Proc. CSEE. 31 63 (in Chinese)[王松岭, 李春曦, 叶学民2011中国电机工程学报31 63]

    [16]

    Li C X, Pei J J, Ye X M 2013 Acta Phys. Sin. 62 174702 (in Chinese)[李春曦, 裴建军, 叶学民2013 62 174702]

    [17]

    Cheng W L, Han F Y, Liu Q N, Zhao R, Fan H 2011 Energy 36 249

    [18]

    Karapetsas G, Sahu K C, Sefiane K, Matar O K 2014 Langmuir 30 4310

    [19]

    Cheng Y L, Ye X M, Yan W P 2002 J. North Chin. Electr. Power Univ. 29 50 (in Chinese)[程友良, 叶学民, 阎维平2002华北电力大学学报29 50]

    [20]

    Wang L, Huai X L, Tao Y J, Wang L 2010 J. Eng. Therm. 06 987 (in Chinese)[王磊, 淮秀兰, 陶毓伽, 王立2010工程热 06 987]

    [21]

    Karapetsas G, Sahu K C, Matar O K 2013 Langmuir 29 8892

    [22]

    Yuan Q, Huang X, Zhao Y P 2014 Phys. Fluids 26 092104

    [23]

    Yuan Q, Zhao Y P 2013 J. Fluid Mech. 716 171

    [24]

    Yuan Q, Zhao Y P 2013 Sci. Rep. 3 1944

    [25]

    Roux D C D, Cooper-White J J 2004 J. Colloid Interface. Sci. 277 424

    [26]

    Yang S M, Tao W S 2006 Heat Transfer (4th Ed.) (Beijing:Higher Education Press) pp37-38(in Chinese)[杨世铭, 陶文铨2006传热学(第4版) (北京:高等教育出版社)第37–38页]

  • [1] Li Chun-Xi, Ma Cheng, Ye Xue-Min. Thermocapillary migration of thin droplet on wettability-confined track. Acta Physica Sinica, 2023, 72(2): 024702. doi: 10.7498/aps.72.20221562
    [2] Wang Xue-Juan, Xu Wei-Qun, Wang Hai-Tong, Yang Jing, Yuan Ping, Zhang Qi-Lin, Hua Le-Yan, Zhang Yuan-Kan. Spectral features, temperature and electron density properties of lightning M-component. Acta Physica Sinica, 2021, 70(9): 099202. doi: 10.7498/aps.70.20201875
    [3] Ye Xue-Min, Zhang Xiang-Shan, Li Ming-Lan, Li Chun-Xi. Thermocapillary migration characteristics of self-rewetting drop. Acta Physica Sinica, 2018, 67(18): 184704. doi: 10.7498/aps.67.20180660
    [4] Ye Xue-Min, Li Yong-Kang, Li Chun-Xi. Influence of equilibrium contact angle on spreading dynamics of a heated droplet on a horizontal plate. Acta Physica Sinica, 2016, 65(10): 104704. doi: 10.7498/aps.65.104704
    [5] Lin Lin, Yuan Ru-Qiang, Zhang Xin-Xin, Wang Xiao-Dong. Spreading dynamics of liquid droplet on gradient micro-structured surfaces. Acta Physica Sinica, 2015, 64(15): 154705. doi: 10.7498/aps.64.154705
    [6] Shen Sheng-Qiang, Zhang Jie-Shan, Liang Gang-Tao. Experimental study of heat transfer from droplet impact on a heated surface. Acta Physica Sinica, 2015, 64(13): 134704. doi: 10.7498/aps.64.134704
    [7] Cui Wei, Yan Zai-Zai, Mu Ren. Second-order Stokes wave solutions for gravity capillary water waves in three-layer dendity-stratified fluid. Acta Physica Sinica, 2014, 63(14): 140301. doi: 10.7498/aps.63.140301
    [8] Fan Wen-Ping, Jiang Xiao-Yun. Parameters estimation for a one-dimensional time fractional thermal wave equation with fractional heat flux conditions. Acta Physica Sinica, 2014, 63(14): 140202. doi: 10.7498/aps.63.140202
    [9] Lü Jin, Yang Li-Jun, Wang Yan-Fang, Ma Wen-Jin. Density functional theory study of structure characteristics and stabilities of Al2Sn(n=2-10) clusters. Acta Physica Sinica, 2014, 63(16): 163601. doi: 10.7498/aps.63.163601
    [10] Gong Zhen-Xing, Li You-Rong, Peng Lan, Wu Shuang-Ying, Shi Wan-Yuan. Asymptotic solution of thermal-solutal capillary convection in a slowly rotating shallow annular pool of two components solution. Acta Physica Sinica, 2013, 62(4): 040201. doi: 10.7498/aps.62.040201
    [11] Zhang Peng, Liu Lin, Chen Wei-Min. Analysis of characteristics and key influencing factors in magnetomechanical behavior for cable stress monitoring. Acta Physica Sinica, 2013, 62(17): 177501. doi: 10.7498/aps.62.177501
    [12] Ge Yang-Zhen, Mi Jian-Chun. Probability density function of temperature in a circular-cylinder turbulent wake. Acta Physica Sinica, 2013, 62(2): 024702. doi: 10.7498/aps.62.024702
    [13] Zhang Yu, Ge Chang-Chun, Guo Biao, Shen Wei-Ping. Hot deformation behavior of spray formed FGH4095. Acta Physica Sinica, 2012, 61(21): 218102. doi: 10.7498/aps.61.218102
    [14] Li Ren-Shun, Zhou Yu-Lu, Zhang Bao-Ling, Deng Ai-Hong, Hou Qing. Thermal release of helium in materials inducedby random-walk mechanism. Acta Physica Sinica, 2011, 60(4): 046604. doi: 10.7498/aps.60.046604
    [15] Gu Yu-Qiu, Ma Zhan-Nan, Zheng Wu-Di, Wang Xiao-Fang, Wu Yu-Chi, Zhu Bin, Dong Ke-Gong, Cao Lei-Feng, He Ying-Ling, Liu Hong-Jie, Hong Wei, Zhou Wei-Min, Zhao Zong-Qing, Zhang Bao-Han, Jiao Chun-Ye, Wen Xian-Lun, Zang Hua-Ping, Yu Jin-Qing, Wei Lai. Density measurement and MHD simulation ofgas-filled capillary discharge waveguide. Acta Physica Sinica, 2011, 60(9): 095202. doi: 10.7498/aps.60.095202
    [16] Yang Zhi-Chun, Wu Feng, Guo Fang-Zhong, Zhang Chun-Ping. Symplectic symmetry feature of thermoacoustic network. Acta Physica Sinica, 2011, 60(8): 084303. doi: 10.7498/aps.60.084303
    [17] Zhao Hua-Bo, Li Zhen, Li Rui, Zhang Zhao-Hui, Zhang Yan, Liu Yu, Li Yan. Using conductive atomic force microscope on carbon nanotube networks. Acta Physica Sinica, 2009, 58(12): 8473-8477. doi: 10.7498/aps.58.8473
    [18] Rong Hai-Wu, Wang Xiang-Dong, Xu Wei, Meng Guang, Fang Tong. On double-peak probability density functions of a Duffing oscillator under narrow-band random excitations. Acta Physica Sinica, 2005, 54(6): 2557-2561. doi: 10.7498/aps.54.2557
    [19] ZHANG GUANG-YIN. SOLUTIONS AND CHARACTERS OF THE THERMAL-INSEN-SITIVE RESONATOR. Acta Physica Sinica, 1991, 40(3): 407-413. doi: 10.7498/aps.40.407
    [20] YU YI-JUN. MEASUREMENT OF ELECTRON DENSITY BY MEANS OF THE FLUORESCENCE OF A THERMAL LITHIUM BEAM. Acta Physica Sinica, 1990, 39(12): 1921-1927. doi: 10.7498/aps.39.1921
Metrics
  • Abstract views:  5849
  • PDF Downloads:  240
  • Cited By: 0
Publishing process
  • Received Date:  24 April 2016
  • Accepted Date:  07 September 2016
  • Published Online:  05 December 2016

/

返回文章
返回
Baidu
map