Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Average degree under different network sizes for random birth-and-death networks

Zhang Xiao-Jun Zhong Shou-Ming

Citation:

Average degree under different network sizes for random birth-and-death networks

Zhang Xiao-Jun, Zhong Shou-Ming
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In the social and biological networks,each agent experiences a birth-and-death process.These evolving networks may exhibit some unique characteristics.Recently,the birth-and-death networks have gradually caught attention,and thus far,most of these studies on birth-and-death networks have focused on the calculations of the degree distributions and their properties.In this paper,a kind of random birth-and-death network (RBDN) with reducing network size is discussed,in which at each time step,with probability p(0pq=1-p.Unlike the existing literature,this study is to calculate the average degrees of the proposed networks under different network sizes.First,for the reducing RBDN,the steady state equations for each node's degree are given by using the Markov chain method based on stochastic process rule,and then the recursive equations of average degree for different network sizes are obtained according to these steady state equations.Second,by means of the recursive equations,we explore four basic properties of average degrees as follows:1) the average degrees are limited,2) the average degrees are strictly monotonically increasing,3) the average degrees are convergent to 2mq,and 4) the sum of each difference between the average degree and 2mq is a bounded number.Theoretical proofs for these four properties are also provided in this paper.Finally,on the basis of these properties,a generation function approach is employed to obtain the exact solutions of the average degrees for various network sizes.In addition to the theoretical derivations to the average degrees,computer simulation is also used to verify the correctness of exact solutions of the average degrees and their properties.Furthermore,we use numerical simulation to study the relationship between the average degree and node increasing probability p.Our simulation results show as follows:1) with the increasing of p,the convergent speed of the average degree to 2mq is increasing;2) with the increasing of m,the convergent speed of the average degree to 2mq is decreasing.In conclusion,for the proposed RBDN model,the main contributions of this study include 1) providing the recursive equations of the average degrees under different network sizes,2) investigating the basic properties for the average degrees,and 3) obtaining the exact solutions of the average degrees.
      Corresponding author: Zhang Xiao-Jun, sczhxj@uestc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61273015).
    [1]

    Adamic L A, Huberman B A, Barábasi A L, Albert R, Jeong H, Bianconi G 2000 Science 287 2115a

    [2]

    Watts D J, Strogatz S H 1998 Nature 393 440

    [3]

    Guimerà R, Arenas A, Díaz-Guilera A, Giralt F 2002 Phys. Rev. E 66 026704

    [4]

    Williams R J, Martinez N D 2000 Nature 404 180

    [5]

    Otto S B, Rall B C, Brose U 2007 Nature 450 1226

    [6]

    Dorogovtsev S N, Mendes J F F 2001 Phys. Rev. E 63 056125

    [7]

    Moreno Y, Gómez J B, Pacheco A F 2002 Europhys. Lett. 58 630

    [8]

    Sarshar N, Roychowdhury V 2004 Phys. Rev. E 69 026101

    [9]

    Slater J L, Hughes B D, Landman K A 2006 Phys. Rev. E 73 066111

    [10]

    Moore C, Ghoshal G, Newman M E J 2006 Phys. Rev. E 74 036121

    [11]

    Farid N, Christensen K 2006 New. J. Phys. 8 212

    [12]

    Saldaña J 2007 Phys. Rev. E 75 027102

    [13]

    Ben-Naim E, Krapivsky P L 2007 J. Phys. A 40 8607

    [14]

    Cai K Y, Dong Z, Liu K, Wu X Y 2011 Stoch. Proc. Appl. 121 885

    [15]

    Zhang X J, He Z, Rayman-Bacchus L 2016 J. Stat. Phys. 162 842

    [16]

    Zhang X J, Yang H L 2016 Chin. Phys. B 25 060202

    [17]

    Barabási A L, Albert R, Jeong H 1999 Physica A 272 173

    [18]

    Krapivsky P L, Redner S, Leyvraz F 2000 Phys. Rev. Lett. 85 4629

    [19]

    Dorogovtsev S N, Mendes J F F, Samukhin A N 2000 Phys. Rev. Lett. 85 4633

    [20]

    Dorogovtsev S N 2003 Phys. Rev. E 67 045102

    [21]

    Krapivsky P L, Redner S 2002 J. Phys. A 35 9517

    [22]

    Shi D H, Chen Q H, Liu L M 2005 Phys. Rev. E 71 036140

    [23]

    Zheng J F, Gao Z Y, Zhao H 2007 Physica A 376 719

    [24]

    Zhang X J, He Z S, He Z, Lez R B 2012 Physica A 391 3350

    [25]

    Tang L, Wang B 2010 Physica A 389 2147

    [26]

    Smith D M D, Onnela J P, Jones N S 2009 Phys. Rev. E 79 056101

    [27]

    Ferretti L, Cortelezzi M 2011 Phys. Rev. E 84 016103

    [28]

    Wang Y Q, Wang J, Yang H B 2014 Acta Phys. Sin. 63 208902 (in Chinese)[王亚奇, 王静, 杨海滨2014 63 208902]

    [29]

    Yu X P, Pei T 2013 Acta Phys. Sin. 62 208901(in Chinese)[余晓平, 裴韬2013 62 208901]

  • [1]

    Adamic L A, Huberman B A, Barábasi A L, Albert R, Jeong H, Bianconi G 2000 Science 287 2115a

    [2]

    Watts D J, Strogatz S H 1998 Nature 393 440

    [3]

    Guimerà R, Arenas A, Díaz-Guilera A, Giralt F 2002 Phys. Rev. E 66 026704

    [4]

    Williams R J, Martinez N D 2000 Nature 404 180

    [5]

    Otto S B, Rall B C, Brose U 2007 Nature 450 1226

    [6]

    Dorogovtsev S N, Mendes J F F 2001 Phys. Rev. E 63 056125

    [7]

    Moreno Y, Gómez J B, Pacheco A F 2002 Europhys. Lett. 58 630

    [8]

    Sarshar N, Roychowdhury V 2004 Phys. Rev. E 69 026101

    [9]

    Slater J L, Hughes B D, Landman K A 2006 Phys. Rev. E 73 066111

    [10]

    Moore C, Ghoshal G, Newman M E J 2006 Phys. Rev. E 74 036121

    [11]

    Farid N, Christensen K 2006 New. J. Phys. 8 212

    [12]

    Saldaña J 2007 Phys. Rev. E 75 027102

    [13]

    Ben-Naim E, Krapivsky P L 2007 J. Phys. A 40 8607

    [14]

    Cai K Y, Dong Z, Liu K, Wu X Y 2011 Stoch. Proc. Appl. 121 885

    [15]

    Zhang X J, He Z, Rayman-Bacchus L 2016 J. Stat. Phys. 162 842

    [16]

    Zhang X J, Yang H L 2016 Chin. Phys. B 25 060202

    [17]

    Barabási A L, Albert R, Jeong H 1999 Physica A 272 173

    [18]

    Krapivsky P L, Redner S, Leyvraz F 2000 Phys. Rev. Lett. 85 4629

    [19]

    Dorogovtsev S N, Mendes J F F, Samukhin A N 2000 Phys. Rev. Lett. 85 4633

    [20]

    Dorogovtsev S N 2003 Phys. Rev. E 67 045102

    [21]

    Krapivsky P L, Redner S 2002 J. Phys. A 35 9517

    [22]

    Shi D H, Chen Q H, Liu L M 2005 Phys. Rev. E 71 036140

    [23]

    Zheng J F, Gao Z Y, Zhao H 2007 Physica A 376 719

    [24]

    Zhang X J, He Z S, He Z, Lez R B 2012 Physica A 391 3350

    [25]

    Tang L, Wang B 2010 Physica A 389 2147

    [26]

    Smith D M D, Onnela J P, Jones N S 2009 Phys. Rev. E 79 056101

    [27]

    Ferretti L, Cortelezzi M 2011 Phys. Rev. E 84 016103

    [28]

    Wang Y Q, Wang J, Yang H B 2014 Acta Phys. Sin. 63 208902 (in Chinese)[王亚奇, 王静, 杨海滨2014 63 208902]

    [29]

    Yu X P, Pei T 2013 Acta Phys. Sin. 62 208901(in Chinese)[余晓平, 裴韬2013 62 208901]

  • [1] Sui Yi-Hui, Guo Xing-Yi, Yu Jun-Jin, Alexander A. Solovev, Ta De-An, Xu Kai-Liang. Accelerating super-resolution ultrasound localization microscopy using generative adversarial net. Acta Physica Sinica, 2022, 71(22): 224301. doi: 10.7498/aps.71.20220954
    [2] Ruan Yi-Run, Lao Song-Yang, Tang Jun, Bai Liang, Guo Yan-Ming. Node importance ranking method in complex network based on gravity method. Acta Physica Sinica, 2022, 71(17): 176401. doi: 10.7498/aps.71.20220565
    [3] Tang Guo-Zhi, Wang Lei, Li Ding-Gen. Predetermined thermal conductivity porous medium generated by conditional generation adversarial network. Acta Physica Sinica, 2021, 70(5): 054401. doi: 10.7498/aps.70.20201061
    [4] Hu Wei, Liao Jian-Bin, Du Yong-Qian. An analytic modeling strategy for memristor cell applicable to large-scale memristive networks. Acta Physica Sinica, 2021, 70(17): 178505. doi: 10.7498/aps.70.20210116
    [5] Ruan Yi-Run, Lao Song-Yang, Wang Jun-De, Bai Liang, Chen Li-Dong. Node importance measurement based on neighborhood similarity in complex network. Acta Physica Sinica, 2017, 66(3): 038902. doi: 10.7498/aps.66.038902
    [6] Wei De-Zhi, Chen Fu-Ji, Zheng Xiao-Xue. Internet public opinion chaotic prediction based on chaos theory and the improved radial basis function in neural networks. Acta Physica Sinica, 2015, 64(11): 110503. doi: 10.7498/aps.64.110503
    [7] Hu Yao-Guang, Wang Sheng-Jun, Jin Tao, Qu Shi-Xian. Biased random walks in the scale-free networks with the disassortative degree correlation. Acta Physica Sinica, 2015, 64(2): 028901. doi: 10.7498/aps.64.028901
    [8] Han Hua, Wu Ling-Yan, Song Ning-Ning. Financial networks model based on random matrix. Acta Physica Sinica, 2014, 63(13): 138901. doi: 10.7498/aps.63.138901
    [9] Wu Teng-Fei, Zhou Chang-Le, Wang Xiao-Hua, Huang Xiao-Xi, Chen Zhi-Qun, Wang Rong-Bo. Microblog propagation network model based on mean-field theory. Acta Physica Sinica, 2014, 63(24): 240501. doi: 10.7498/aps.63.240501
    [10] Liu Jin-Liang. Research on synchronization of complex networks with random nodes. Acta Physica Sinica, 2013, 62(4): 040503. doi: 10.7498/aps.62.040503
    [11] Yu Xiao-Ping, Pei Tao. Analysis on degree characteristics of mobile call network. Acta Physica Sinica, 2013, 62(20): 208901. doi: 10.7498/aps.62.208901
    [12] Yu Hai-Tao, Wang Jiang, Liu Chen, Che Yan-Qiu, Deng Bin, Wei Xi-Le. Stochastic resonance in coupled small-world neural networks. Acta Physica Sinica, 2012, 61(6): 068702. doi: 10.7498/aps.61.068702
    [13] Zhou Xuan, Zhang Feng-Ming, Li Ke-Wu, Hui Xiao-Bin, Wu Hu-Sheng. Finding vital node by node importance evaluation matrix in complex networks. Acta Physica Sinica, 2012, 61(5): 050201. doi: 10.7498/aps.61.050201
    [14] Dou Fei-Ling, Hu Yan-Qing, Li Yong, Fan Ying, Di Zeng-Ru. Random walks on spatial networks. Acta Physica Sinica, 2012, 61(17): 178901. doi: 10.7498/aps.61.178901
    [15] Xing Chang-Ming, Liu Fang-Ai, Xu Ru-Zhi. Exact solution for mean trapping time of random walk on a scale-free Koch network. Acta Physica Sinica, 2012, 61(20): 200503. doi: 10.7498/aps.61.200503
    [16] Lü Ling, Zou Jia-Rui, Yang Ming, Meng Le, Guo Li, Chai Yuan. Synchronization of spatiotemporal chaos in large scale rich-club network. Acta Physica Sinica, 2010, 59(10): 6864-6870. doi: 10.7498/aps.59.6864
    [17] Zhao Qing-Gui, Kong Xiang-Xing, Hou Zhen-Ting. The degree distribution of simple generalized collaboration networks. Acta Physica Sinica, 2009, 58(10): 6682-6685. doi: 10.7498/aps.58.6682
    [18] Liu Guang-Jie, Shan Liang, Dai Yue-Wei, Sun Jin-Sheng, Wang Zhi-Quan. One-way Hash function based on chaotic neural network. Acta Physica Sinica, 2006, 55(11): 5688-5693. doi: 10.7498/aps.55.5688
    [19] MENG XU-JUN, SUN YONG-SHENG, LI SHI-CHANG. CALCULATION OF ATOMIC AVERAGE DEGREE OF IONIZATION. Acta Physica Sinica, 1994, 43(3): 345-350. doi: 10.7498/aps.43.345
    [20] . Acta Physica Sinica, 1939, 3(2): 148-181. doi: 10.7498/aps.3.148
Metrics
  • Abstract views:  6164
  • PDF Downloads:  271
  • Cited By: 0
Publishing process
  • Received Date:  28 May 2016
  • Accepted Date:  30 June 2016
  • Published Online:  05 December 2016

/

返回文章
返回
Baidu
map