Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A modified adaptive immune optimization algorithm for geometrical optimization of Pd-Pt clusters

Wu Xia Liu Qi-Man Duan Ren-Yan Wei Zheng

Citation:

A modified adaptive immune optimization algorithm for geometrical optimization of Pd-Pt clusters

Wu Xia, Liu Qi-Man, Duan Ren-Yan, Wei Zheng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Bimetallic Pd-Pt clusters have attracted wide interest because of their special catalytic, optical, electronic, and magnetic properties. However, the geometrical optimization of Pd-Pt cluster has been a difficult task due to the homotopic problem, i.e., in some binary clusters, these clusters are identical in configuration, but different in relative arrangement of two types of atoms. For a fixed geometrical configuration the iterated local search(ILS) method is adopted to search the optimal homotop. By the combination of the merit of heuristic optimization algorithm and the idea of dynamic lattice searching(DLS), an adaptive immune optimization algorithm(AIOA) is modified, and the modified AIOA is called AIOA-BDLS-ILS method. To evaluate the efficiency of the improved method, the optimization of binary Lennard-Jones clusters up to 100 atoms is performed. The Results show that the CPU time for one hit of the global minima is less than 5000 s for all clusters and it is less than 1000 s for most clusters. Compared with previously reported BDLS-ILS method, the proposed method is very efficient. The method is thus proved to be efficient. It can be deduced that the method should be a universal algorithm for the fast optimization of binary or bimetallic clusters. Furthermore, the Gupta potential is used to describe the interatomic interactions in Pd-Pt clusters, which is based on the second moment approximation to tight binding theory, and the corresponding potential parameters are fitted to the experimental values of cohesive energy, lattice constant, and elastic constants for the face centered cubic crystal structure at 0 K. The structural optimizations of Pd-Pt clusters with 34, 50 and 79 atoms are performed by the AIOA-BDLS-ILS method. Results show that for optimizing the 34-atom Pd-Pt clusters, 12 new structures with lower energies are found. In 34-atom bimetallic Pd-Pt clusters, the motifs can be categorized into five classes, i.e., 12 decahedral structures, 3 decahedral structures with close packing anti-layers, 7 incomplete Mackay icosahedral structures, 6 poly-icosahedral structures, and 5 structures composed of two 19-atom double icosahedra. In 50- and 79-atom Pd-Pt clusters, the structural characteristics and the atomic distributions are analyzed. The results indicate that the decahedral and decahedral structures with close-packed configurations are dominant, and twin face centered cubic and partial icosahedral structures are also found. Moreover, the order parameter is adopted to analyze the distributions of different types of atoms in Pd-Pt clusters, which are calculated by the average distance of Pd or Pt atoms from the center of a cluster. The results show that there exists the segregation phenomenon of Pd and Pt atoms in Pd-Pt clusters, i.e., Pd atoms tend to occupy the surface sites, and Pt atoms prefer to occupy the inner core sites. This is explained by the lower surface energy of Pd(125-131 meV-2) than that of Pt(155-159 meV-2).
      Corresponding author: Wu Xia, xiawu@aqnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant Nos. 21203002, 31570417).
    [1]

    Ferrando R, Jellinek J, Johnston R L 2008 Chem. Rev. 108 845

    [2]

    Baletto F, Mottet C, Ferrando R 2003 Phys. Rev. Lett. 90 135504

    [3]

    Brown J A, Mishin A 2003 Phys. Rev. B 67 195414

    [4]

    Bazin D, Guillaume D, Pichon C, Uzio D, Lopez S 2005 Oil Gas Sci. Technol. 60 801

    [5]

    Stanislaus A, Cooper B H 1994 Catal. Rev.-Sci. Eng. 36 75

    [6]

    Barcaro G, Fortunelli A, Polak M, Rubinovich L 2011 Nano Lett. 11 1766

    [7]

    Paz-Borbón L O, Johnston R L, Barcaro G, Fortunelli A 2007 J. Phys. Chem. C 111 2936

    [8]

    Paz-Borbón L O, Mortimer-Jones T V, Johnston R L, Posada-Amarillas A, Barcaro G, Fortunelli A 2007 Phys. Chem. Chem. Phys. 9 5202

    [9]

    Cheng D J, Huang S P, Wang W C 2006 Chem. Phys. 330 423

    [10]

    Cheng D J, Cao D P 2008 Chem. Phys. Lett. 461 71

    [11]

    Liu T D, Chen J R, Hong W P, Shao G F, Wang T N, Zheng J W, Wen Y H 2013 Acta Phys. Sin. 62 193601(in Chinese)[刘暾东, 陈俊仁, 洪武鹏, 邵桂芳, 王婷娜, 郑骥文, 文玉华2013 62 193601]

    [12]

    Liu T D, Zheng J W, Shao G F, Fan T E, Wen Y H 2015 Chin. Phys. B 24 033601

    [13]

    Deaven D M, Tit N, Morris J R, Ho K M 1996 Chem. Phys. Lett. 256 195

    [14]

    Wales D J, Doye J P K 1997 J. Phys. Chem. A 101 5111

    [15]

    Cai W S, Shao X G 2002 J. Comput. Chem. 23 427

    [16]

    Shao X G, Cheng L J, Cai W S 2004 J. Chem. Phys. 120 11401

    [17]

    Shao X G, Cheng L J, Cai W S 2004 J. Comput. Chem. 25 1693

    [18]

    Johnston R L 2003 J. Chem. Soc. Dalton Trans. 22 4193

    [19]

    Cassioli A, Locatelli M, Schoen F 2009 Optim. Methods Softw. 24 819

    [20]

    Wu X, Cai W S, Shao X G 2009 J. Comput. Chem. 30 1992

    [21]

    Doye J P K, Meyer L 2005 Phys. Rev. Lett. 95 063401

    [22]

    Marques J M C, Pereira F B 2010 Chem. Phys. Lett. 485 211

    [23]

    Ye T, Xu R C, Huang W Q 2011 J. Chem. Inf. Model. 51 572

    [24]

    Rondina G G, Da Silva J L F 2013 J. Chem. Inf. Model. 53 2282

    [25]

    Lai X J, Xu R C, Huang W Q 2011 J. Chem. Phys. 135 164109

    [26]

    Wu X, Cheng W 2014 J. Chem. Phys. 141 124110

    [27]

    Shao X G, Yang X L, Cai W S 2008 Chem. Phys. Lett. 460 315

    [28]

    Shao X G, Wu X, Cai W S 2010 J. Phys. Chem. A 114 12813

    [29]

    Liu D C, Nocedal J 1989 Math. Program. 45 503

    [30]

    Lim B, Wang J G, Camargo P H C, Cobley C M, Kim M J, Xia Y N 2009 Angew. Chem. Int. Ed. 48 6304

    [31]

    Liu H B, Pal U, Medina A, Maldonado C, Ascencio J A 2005 Phys. Rev. B 71 075403

    [32]

    Pittaway F, Paz-Borbon L O, Johnston R L, Arslan H, Ferrando R, Mottet C, Barcaro G, Fortunelli A 2009 J. Phys. Chem. C 113 9141

  • [1]

    Ferrando R, Jellinek J, Johnston R L 2008 Chem. Rev. 108 845

    [2]

    Baletto F, Mottet C, Ferrando R 2003 Phys. Rev. Lett. 90 135504

    [3]

    Brown J A, Mishin A 2003 Phys. Rev. B 67 195414

    [4]

    Bazin D, Guillaume D, Pichon C, Uzio D, Lopez S 2005 Oil Gas Sci. Technol. 60 801

    [5]

    Stanislaus A, Cooper B H 1994 Catal. Rev.-Sci. Eng. 36 75

    [6]

    Barcaro G, Fortunelli A, Polak M, Rubinovich L 2011 Nano Lett. 11 1766

    [7]

    Paz-Borbón L O, Johnston R L, Barcaro G, Fortunelli A 2007 J. Phys. Chem. C 111 2936

    [8]

    Paz-Borbón L O, Mortimer-Jones T V, Johnston R L, Posada-Amarillas A, Barcaro G, Fortunelli A 2007 Phys. Chem. Chem. Phys. 9 5202

    [9]

    Cheng D J, Huang S P, Wang W C 2006 Chem. Phys. 330 423

    [10]

    Cheng D J, Cao D P 2008 Chem. Phys. Lett. 461 71

    [11]

    Liu T D, Chen J R, Hong W P, Shao G F, Wang T N, Zheng J W, Wen Y H 2013 Acta Phys. Sin. 62 193601(in Chinese)[刘暾东, 陈俊仁, 洪武鹏, 邵桂芳, 王婷娜, 郑骥文, 文玉华2013 62 193601]

    [12]

    Liu T D, Zheng J W, Shao G F, Fan T E, Wen Y H 2015 Chin. Phys. B 24 033601

    [13]

    Deaven D M, Tit N, Morris J R, Ho K M 1996 Chem. Phys. Lett. 256 195

    [14]

    Wales D J, Doye J P K 1997 J. Phys. Chem. A 101 5111

    [15]

    Cai W S, Shao X G 2002 J. Comput. Chem. 23 427

    [16]

    Shao X G, Cheng L J, Cai W S 2004 J. Chem. Phys. 120 11401

    [17]

    Shao X G, Cheng L J, Cai W S 2004 J. Comput. Chem. 25 1693

    [18]

    Johnston R L 2003 J. Chem. Soc. Dalton Trans. 22 4193

    [19]

    Cassioli A, Locatelli M, Schoen F 2009 Optim. Methods Softw. 24 819

    [20]

    Wu X, Cai W S, Shao X G 2009 J. Comput. Chem. 30 1992

    [21]

    Doye J P K, Meyer L 2005 Phys. Rev. Lett. 95 063401

    [22]

    Marques J M C, Pereira F B 2010 Chem. Phys. Lett. 485 211

    [23]

    Ye T, Xu R C, Huang W Q 2011 J. Chem. Inf. Model. 51 572

    [24]

    Rondina G G, Da Silva J L F 2013 J. Chem. Inf. Model. 53 2282

    [25]

    Lai X J, Xu R C, Huang W Q 2011 J. Chem. Phys. 135 164109

    [26]

    Wu X, Cheng W 2014 J. Chem. Phys. 141 124110

    [27]

    Shao X G, Yang X L, Cai W S 2008 Chem. Phys. Lett. 460 315

    [28]

    Shao X G, Wu X, Cai W S 2010 J. Phys. Chem. A 114 12813

    [29]

    Liu D C, Nocedal J 1989 Math. Program. 45 503

    [30]

    Lim B, Wang J G, Camargo P H C, Cobley C M, Kim M J, Xia Y N 2009 Angew. Chem. Int. Ed. 48 6304

    [31]

    Liu H B, Pal U, Medina A, Maldonado C, Ascencio J A 2005 Phys. Rev. B 71 075403

    [32]

    Pittaway F, Paz-Borbon L O, Johnston R L, Arslan H, Ferrando R, Mottet C, Barcaro G, Fortunelli A 2009 J. Phys. Chem. C 113 9141

  • [1] Yang Jian-Yu, Xi Kun, Zhu Li-Zhe. Transition state searching for complex biomolecules: Algorithms and machine learning. Acta Physica Sinica, 2023, 72(24): 248701. doi: 10.7498/aps.72.20231319
    [2] Jiang Yao-Yao, Zhang Wen-Bin, Chu Peng-Cheng, Ma Hong-Yang. Feedback search algorithm for multi-particle quantum walks over a ring based on permutation groups. Acta Physica Sinica, 2022, 71(3): 030201. doi: 10.7498/aps.71.20211000
    [3] Feedback search algorithm for multi-particle quantum walks over a ring based on permutation groups. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211000
    [4] Zhang Ren-Qiang, Jiang Xiang-Yu, Yu Jiong-Chi, Zeng Chong, Gong Ming, Xu Shun. Calculation and optimization of correlation function in distillation method of lattice quantum chromodynamcis. Acta Physica Sinica, 2021, 70(16): 161201. doi: 10.7498/aps.70.20210030
    [5] Wu Xia, Wei Zheng. Geometrical optimization of Cu-Au-Pd clusters based on the construction of inner cores. Acta Physica Sinica, 2017, 66(15): 150202. doi: 10.7498/aps.66.150202
    [6] Liu Yan-Mei, Chen Han-Wu, Liu Zhi-Hao, Xue Xi-Ling, Zhu Wan-Ning. Scattering quantum walk search algorithm on star graph. Acta Physica Sinica, 2015, 64(1): 010301. doi: 10.7498/aps.64.010301
    [7] Song Dan, Fan Xiao-Ping, Liu Zhong-Li. An immune memory optimization algorithm based on the non-genetic information. Acta Physica Sinica, 2015, 64(14): 140203. doi: 10.7498/aps.64.140203
    [8] Zhou Qing-Yong, Ji Jian-Feng, Ren Hong-Fei. Quick search algorithm of X-ray pulsar period based on unevenly spaced timing data. Acta Physica Sinica, 2013, 62(1): 019701. doi: 10.7498/aps.62.019701
    [9] Liu Tun-Dong, Chen Jun-Ren, Hong Wu-Peng, Shao Gui-Fang, Wang Ting-Na, Zheng Ji-Wen, Wen Yu-Hua. Particle swarm optimization investigation of stable structures of Pt-Pd alloy nanoparticles. Acta Physica Sinica, 2013, 62(19): 193601. doi: 10.7498/aps.62.193601
    [10] Zhang Shui-Jian, Liu Xue-Jun, Yang Yang. Dynamic stochastic shortest path algorithm. Acta Physica Sinica, 2012, 61(16): 160201. doi: 10.7498/aps.61.160201
    [11] Wang Ya-Qi, Yang Xiao-Yuan. Study on a model of topology evolution of wireless sensor networks among cluster heads and its immunization. Acta Physica Sinica, 2012, 61(9): 090202. doi: 10.7498/aps.61.090202
    [12] Zhu Si-Feng, Liu Fang, Chai Zheng-Yi, Qin Yu-Tao, Wu Jian-She. Simple harmonic oscillator immune optimization algorithm for solving vertical handoff decision problem in heterogeneous wireless network. Acta Physica Sinica, 2012, 61(9): 096401. doi: 10.7498/aps.61.096401
    [13] Chai Zheng-Yi, Zheng Li-Ping, Zhu Si-Feng. Chaotic immune optimization based resource allocation in cognitive radio network. Acta Physica Sinica, 2012, 61(11): 118801. doi: 10.7498/aps.61.118801
    [14] Chai Zheng-Yi, Chen Liang, Zhu Si-Feng. Parameter optimization of cognitive engine based on chaos multi-objective immune algorithm. Acta Physica Sinica, 2012, 61(5): 058801. doi: 10.7498/aps.61.058801
    [15] Zhou Jie, Zu Yun-Xiao. A parallel immune genetic algorithm in adaptive resource allocation for cognitive radio network. Acta Physica Sinica, 2010, 59(10): 7508-7515. doi: 10.7498/aps.59.7508
    [16] E Xiao-Liang, Duan Hai-Ming. Study of the structure evolution and ground state energy of ConCu55-n(n=0—55) bimetallic clusters by using the Gupta potential combined with a genetic algorithm. Acta Physica Sinica, 2010, 59(8): 5672-5680. doi: 10.7498/aps.59.5672
    [17] Liu Shi-Rong, Huang Wei-Qi, Qin Zhao-Jian. Germanium quantum dots formed by oxidation of SiGe alloys. Acta Physica Sinica, 2006, 55(5): 2488-2491. doi: 10.7498/aps.55.2488
    [18] Guo Jian-Jun, Yang Ji-Xian, Die Dong, Yu Gui-Feng, Jiang Gang. Study on the structures and properties of small Pd-Y clusters. Acta Physica Sinica, 2005, 54(8): 3571-3577. doi: 10.7498/aps.54.3571
    [19] Ye Zi-Yan, Zhang Qing-Yu. Moleculardynamicssimulationsoflow energyPtclusterdeposition. Acta Physica Sinica, 2002, 51(12): 2798-2803. doi: 10.7498/aps.51.2798
    [20] YING HE-PING, DONG SHAO-JING. THE BETA-FUNCTION AND MASS GAP IN SU(2) LATTICE GAUGE THEORY FOR COUPLING LESS THAN ONE. Acta Physica Sinica, 1988, 37(3): 520-523. doi: 10.7498/aps.37.520
Metrics
  • Abstract views:  6806
  • PDF Downloads:  244
  • Cited By: 0
Publishing process
  • Received Date:  21 June 2016
  • Accepted Date:  28 July 2016
  • Published Online:  05 November 2016

/

返回文章
返回
Baidu
map