Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fractional Fourier transform of astigmatic sine-Gaussian beams and generation of dark hollow light beams with elliptic geometry

Zhu Jie Zhu Kai-Cheng

Citation:

Fractional Fourier transform of astigmatic sine-Gaussian beams and generation of dark hollow light beams with elliptic geometry

Zhu Jie, Zhu Kai-Cheng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this work, we develop a novel method of creating dark hollow beam with vortex by converting a sine-Gaussian beam (SeGB) with edge-dislocation and astigmatism through using fractional Fourier transform (FrFT) optical system. On the basis of the definition of the FrFT, an analytical transformation formula is derived for an astigmatic SeGB passing through such a transform system. By use of the derived formulae, the changes of the intensity distribution and the corresponding phase properties associated with the transforming astigmatic SeGBs are analytically discussed in detail. It is found that for an input SeGB without astigmatism, there is still a dark line or an edge dislocation associated with the intensity distribution of the FrFT beam along the initial dislocation line, similar to that of the input SeGB. However, when the input SeGB astigmatically passes through an FrFT optical system, the dark line of the intensity distribution of the input SeGB can be converted into a solitary zero point, or in other words, a dark hollow beam with a single-charge vortex can be produced by SeGB with an edge dislocation. The results reveal that the astigmatism plays a critical role in transforming a SeGB into a dark hollow one through the FrFT optical system. Furthermore, some numerical calculation results based on the derived formula are presented and discussed graphically. It is shown that for appropriate beam parameters and carefully adjusting the transform angle of FrFT, dark hollow beams with single-charge vortex and elongated elliptic geometry can be realized with astigmatic SeGBs. The influences of the beam parameters and the transform angle of FrFT optical system on the generation of perfect dark hollow beams are also investigated. The results demonstrate that the linear eccentricity of the dark hollow beam, which is roughly defined as the ratio of semi-minor axis to semi-major one of the intensity pattern, mainly depends on the Fresnel number. And the optimal linear eccentricity may be relatively large under carefully selecting the beam and optical system parameters. Moreover, optimal parameter values corresponding to perfect dark hollow beam configurations which can be experimentally accessed are presented. As is well known, there are two types of pure phase defects or dislocations in the optical fields:one is screw dislocation or vortex and the other is edge-dislocation. Due to their important applications, the propagation dynamics of optical vortices or edge dislocations are extensively studied both theoretically and experimentally. The vortex-edge dislocation interaction is investigated in detail. However, there are fewer reports on the direct conversion between a single edge dislocation and a vortex. Therefore, the results obtained in this paper represent a significant step forward in understanding the transformation dynamics between beams with pure edge dislocation and vortex, and also opens possibilities for their potential applications, e.g., in generating dark hollow beams with elliptic geometry using FrFT systems.
      Corresponding author: Zhu Kai-Cheng, kczhu058@csu.edu.cn
    • Funds: Project supported by the High Level Introduction of Talent Research Start-up Fund of Guizhou Institute of Technology, China.
    [1]

    Namias V 1980 IMA J. Appl. Math. 25 241

    [2]

    Ozaktas H, Kutay M, Zalevsky Z 2001 The Fractional Fourier Transform with Applications in Optics and Signal Processing (New Jersey:Wiley) pp 319-386

    [3]

    Lohmann A W 1993 J. Opt. Soc. Am. A 10 2181

    [4]

    Yin J, Gao W, Zhu Y 2003 Prog. Opt. 45 119

    [5]

    Ottl A, Ritter S, Kohl M, Esslinger T 2005 Phys. Rev. Lett. 95 090404

    [6]

    Volyar A, Shvedov V, Fadeyeva T, Desyatnikov A S, Neshev D N, Krolikowski W, Kivshar Y S 2006 Opt. Express 14 3724

    [7]

    Xie Q, Zhao D 2007 Opt. Commun. 275 394

    [8]

    Liu Z, Dai J, Zhao X, Sun X, Liu S, Ahmad M A 2009 Opt. Lasers Eng. 47 1250

    [9]

    Nie Y, Li X, Qi J, Ma H, Liao J, Yang J, Hu W 2012 Opt. Laser Technol. 44 384

    [10]

    Lu S, You K, Chen L, Wang Y, Zhang D Y 2013 Optik 124 3301

    [11]

    Zhu S, Zhao C, Chen Y, Cai Y 2013 Optik 124 5271

    [12]

    Wei C, Lu X, Wu G, Wang F, Cai Y 2014 Appl. Phys. B 115 55

    [13]

    Chakraborty R, Ghosh A 2006 J. Opt. Soc. Am. A 23 2278

    [14]

    Zhao C, Lu X, Wang L, Chen H 2008 Opt. Laser Technol. 40 575

    [15]

    Tang H Q, Zhu K C 2013 Opt. Laser Technol. 54 68

    [16]

    Zhu K C, Tang H Q, Tang Y, Xia H 2014 Opt. Laser Technol. 64 11

    [17]

    Zhu K C, Tang H Q, Zheng X J, Tang Y 2014 Acta Phys. Sin. 63 104210 (in Chinese)[朱开成, 唐慧琴, 郑小娟, 唐英2014 63 104210]

    [18]

    Anguianomorales M, Salaspeimbert D P, Trujilloschiaffino G, Corralmartínez L F, Garduñowilches I 2015 Opt. Quant. Electron. 47 2983

    [19]

    Casperson L W, Hall D G, Tovar A A 1997 J. Opt. Soc. Am. A 14 3341

    [20]

    Casperson L W, Tovar A A 1998 J. Opt. Soc. Am. A 15 954

    [21]

    Wang X Q, L B D 2002 Acta Phys. Sin. 51 247 (in Chinese)[王喜庆, 吕百达2002 51 247]

    [22]

    Eyyuboğlu H T, Baykal Y 2005 J. Opt. Soc. Am. A 22 2709

    [23]

    Eyyuboğlu H T 2007 Optik 118 289

    [24]

    Lu Z 2007 Chin. Phys. 16 1320

    [25]

    Ding P, Qu J, Meng K, Cui Z 2008 Opt. Commun. 281 395

    [26]

    Li J H, Yang A L, L B D 2009 Acta Phys. Sin. 58 674 (in Chinese)[李晋红, 杨爱林, 吕百达2009 58 674]

    [27]

    Yahya B 2012 J. Opt. 14 075707

    [28]

    Xu Y 2014 Optik 125 3465

    [29]

    Huang Y, Wang F, Gao Z, Zhang B 2015 Opt. Express 23 1088

    [30]

    Gerçekcioğlu H, Baykal Y 2014 Opt. Commun. 320 1

    [31]

    Zhao D, Mao H, Liu H, Wang S, Jing F, Wei X 2004 Opt. Commun. 236 225

    [32]

    Du X, Zhao D 2007 Phys. Lett. A 366 271

    [33]

    Zhou G Q, Chu X X 2009 Opt. Express 17 10529

    [34]

    Zhou G Q 2009 J. Mod. Opt. 56 886

    [35]

    Chen S, Zhang T, Feng X 2009 Opt. Commun. 282 1083

    [36]

    Serna J, Nemeş G 1993 Opt. Lett. 18 1774

    [37]

    Gregor I, Enderlein J 2005 Opt. Lett. 30 2527

    [38]

    Zheng C 2006 Phys. Lett. A 355 156

    [39]

    Zheng C 2009 Optik 120 274

    [40]

    Lu X, Wei C, Liu L, Wu G, Wang F, Cai Y 2014 Opt. Laser Technol. 56 92

    [41]

    Wang X, Liu Z, Zhao D 2014 Opt. Eng. 53 086112

    [42]

    Tang B, Jiang S, Jiang C, Zhu H 2014 Opt. Laser Technol. 59 116

  • [1]

    Namias V 1980 IMA J. Appl. Math. 25 241

    [2]

    Ozaktas H, Kutay M, Zalevsky Z 2001 The Fractional Fourier Transform with Applications in Optics and Signal Processing (New Jersey:Wiley) pp 319-386

    [3]

    Lohmann A W 1993 J. Opt. Soc. Am. A 10 2181

    [4]

    Yin J, Gao W, Zhu Y 2003 Prog. Opt. 45 119

    [5]

    Ottl A, Ritter S, Kohl M, Esslinger T 2005 Phys. Rev. Lett. 95 090404

    [6]

    Volyar A, Shvedov V, Fadeyeva T, Desyatnikov A S, Neshev D N, Krolikowski W, Kivshar Y S 2006 Opt. Express 14 3724

    [7]

    Xie Q, Zhao D 2007 Opt. Commun. 275 394

    [8]

    Liu Z, Dai J, Zhao X, Sun X, Liu S, Ahmad M A 2009 Opt. Lasers Eng. 47 1250

    [9]

    Nie Y, Li X, Qi J, Ma H, Liao J, Yang J, Hu W 2012 Opt. Laser Technol. 44 384

    [10]

    Lu S, You K, Chen L, Wang Y, Zhang D Y 2013 Optik 124 3301

    [11]

    Zhu S, Zhao C, Chen Y, Cai Y 2013 Optik 124 5271

    [12]

    Wei C, Lu X, Wu G, Wang F, Cai Y 2014 Appl. Phys. B 115 55

    [13]

    Chakraborty R, Ghosh A 2006 J. Opt. Soc. Am. A 23 2278

    [14]

    Zhao C, Lu X, Wang L, Chen H 2008 Opt. Laser Technol. 40 575

    [15]

    Tang H Q, Zhu K C 2013 Opt. Laser Technol. 54 68

    [16]

    Zhu K C, Tang H Q, Tang Y, Xia H 2014 Opt. Laser Technol. 64 11

    [17]

    Zhu K C, Tang H Q, Zheng X J, Tang Y 2014 Acta Phys. Sin. 63 104210 (in Chinese)[朱开成, 唐慧琴, 郑小娟, 唐英2014 63 104210]

    [18]

    Anguianomorales M, Salaspeimbert D P, Trujilloschiaffino G, Corralmartínez L F, Garduñowilches I 2015 Opt. Quant. Electron. 47 2983

    [19]

    Casperson L W, Hall D G, Tovar A A 1997 J. Opt. Soc. Am. A 14 3341

    [20]

    Casperson L W, Tovar A A 1998 J. Opt. Soc. Am. A 15 954

    [21]

    Wang X Q, L B D 2002 Acta Phys. Sin. 51 247 (in Chinese)[王喜庆, 吕百达2002 51 247]

    [22]

    Eyyuboğlu H T, Baykal Y 2005 J. Opt. Soc. Am. A 22 2709

    [23]

    Eyyuboğlu H T 2007 Optik 118 289

    [24]

    Lu Z 2007 Chin. Phys. 16 1320

    [25]

    Ding P, Qu J, Meng K, Cui Z 2008 Opt. Commun. 281 395

    [26]

    Li J H, Yang A L, L B D 2009 Acta Phys. Sin. 58 674 (in Chinese)[李晋红, 杨爱林, 吕百达2009 58 674]

    [27]

    Yahya B 2012 J. Opt. 14 075707

    [28]

    Xu Y 2014 Optik 125 3465

    [29]

    Huang Y, Wang F, Gao Z, Zhang B 2015 Opt. Express 23 1088

    [30]

    Gerçekcioğlu H, Baykal Y 2014 Opt. Commun. 320 1

    [31]

    Zhao D, Mao H, Liu H, Wang S, Jing F, Wei X 2004 Opt. Commun. 236 225

    [32]

    Du X, Zhao D 2007 Phys. Lett. A 366 271

    [33]

    Zhou G Q, Chu X X 2009 Opt. Express 17 10529

    [34]

    Zhou G Q 2009 J. Mod. Opt. 56 886

    [35]

    Chen S, Zhang T, Feng X 2009 Opt. Commun. 282 1083

    [36]

    Serna J, Nemeş G 1993 Opt. Lett. 18 1774

    [37]

    Gregor I, Enderlein J 2005 Opt. Lett. 30 2527

    [38]

    Zheng C 2006 Phys. Lett. A 355 156

    [39]

    Zheng C 2009 Optik 120 274

    [40]

    Lu X, Wei C, Liu L, Wu G, Wang F, Cai Y 2014 Opt. Laser Technol. 56 92

    [41]

    Wang X, Liu Z, Zhao D 2014 Opt. Eng. 53 086112

    [42]

    Tang B, Jiang S, Jiang C, Zhu H 2014 Opt. Laser Technol. 59 116

  • [1] Huang Yu-Hang, Chen Li-Xiang. Fractional Fourier transform imaging based on untrained neural networks. Acta Physica Sinica, 2024, 73(9): 094201. doi: 10.7498/aps.73.20240050
    [2] Hu Jing, Wang Huan, Ji Xiao-Ling. Propagation characteristics of focused astigmatic Gaussian beams in Kerr nonlinear media. Acta Physica Sinica, 2021, 70(7): 074205. doi: 10.7498/aps.70.20201661
    [3] Zhu Jie, Tang Hui-Qin, Li Xiao-Li, Liu Xiao-Qin. Propagation properties of nonuniform cosine-Gaussian correlated Bessel-Gaussian beam through paraxial ABCD system and generation of dark-hollow beam array. Acta Physica Sinica, 2017, 66(16): 164202. doi: 10.7498/aps.66.164202
    [4] Zhu Qing-Zhi, Wu Feng-Tie, Hu Run, Feng Cong. Precise controll of hollow beam size. Acta Physica Sinica, 2016, 65(18): 184101. doi: 10.7498/aps.65.184101
    [5] Gong Ning, Zhu Kai-Cheng, Xia Hui. Gyrator transform of four-petal Gaussian beam and generation of rectangular hollow beam. Acta Physica Sinica, 2016, 65(12): 124204. doi: 10.7498/aps.65.124204
    [6] Zhou Qi, Lu Jun-fa, Yin Jian-Ping. Theoretical and experimental study of a controllable double-dark-hollow beam. Acta Physica Sinica, 2015, 64(5): 053701. doi: 10.7498/aps.64.053701
    [7] Chen Guo-Jun, Zhou Qiao-Qiao, Ji Xian-Ming, Yin Jian-Ping. Generation of the tunable vector ellipse hollow beam by using linearly polarized light beams. Acta Physica Sinica, 2014, 63(8): 083701. doi: 10.7498/aps.63.083701
    [8] Zhu Kai-Cheng, Tang Hui-Qin, Zheng Xiao-Juan, Tang Ying. Gyrator transform of generalized sinh-Gaussian beam and generation of dark hollow light beam with vortex. Acta Physica Sinica, 2014, 63(10): 104210. doi: 10.7498/aps.63.104210
    [9] Liu Xiao-Li, Feng Guo-Ying, Li Wei, Tang Chun, Zhou Shou-Huan. Theoretical and experimental study on M2 factor matrix for astigmatic elliptical Gaussian beam. Acta Physica Sinica, 2013, 62(19): 194202. doi: 10.7498/aps.62.194202
    [10] Lu Da-Quan, Hu Wei. Two-dimensional asynchronous fractional Fourier transform and propagation properties of beams in strongly nonlocal nonlinear medium with an elliptically symmetric response. Acta Physica Sinica, 2013, 62(8): 084211. doi: 10.7498/aps.62.084211
    [11] Cheng Zhi-Ming, Wu Feng-Tie, Fang Xiang, Fan Dan-Dan, Zhu Jian-Qiang. Multi-bottle beam generated by vaulted axicon. Acta Physica Sinica, 2012, 61(21): 214201. doi: 10.7498/aps.61.214201
    [12] Zhang Qian-An, Wu Feng-Tie, Zheng Wei-Tao, Ma Liang. Bottle beam generated by novel axicon. Acta Physica Sinica, 2011, 60(9): 094201. doi: 10.7498/aps.60.094201
    [13] Zhao Bao-Ping, Yang Zhen-Jun, Lu Da-Quan, Hu Wei. Mutual-induced fractional Fourier transform in strongly nonlocal nonlinear medium. Acta Physica Sinica, 2011, 60(8): 084214. doi: 10.7498/aps.60.084214
    [14] Zhao Gui-Yan, Zhang Yi-Xin, Wang Jian-Yu, Jia Jian-Jun. Defocus and astigmatic aberration of the turbulent atmosphere and the intensity distribution of a vortex carrying Gaussian beam. Acta Physica Sinica, 2010, 59(2): 1378-1384. doi: 10.7498/aps.59.1378
    [15] Luo Ya-Mei, Lü Bai-Da. Focusing of an anomalous hollow beam by a spherically aberrated aperture lens and its phase singularities in the focal region. Acta Physica Sinica, 2009, 58(6): 3915-3922. doi: 10.7498/aps.58.3915
    [16] Shi Peng, Liu Qiang, Cao Guo-Wei, Li Yong-Ping. An improved fast algorithm for chirp transforms and its applications. Acta Physica Sinica, 2009, 58(8): 5392-5398. doi: 10.7498/aps.58.5392
    [17] Chen Bao-Xin, Li Ming, Zhang Ai-Ju. Phase space beam matrix method for evaluating geometrical aspect of fractional Fourier transform of light beams. Acta Physica Sinica, 2007, 56(8): 4535-4541. doi: 10.7498/aps.56.4535
    [18] Wu Ping, Lü Bai-Da, Chen Tian-Lu. Fractional Fourier transform of beams in the use of the Wigner distribution function method. Acta Physica Sinica, 2005, 54(2): 658-664. doi: 10.7498/aps.54.658
    [19] Yang Zhen-Jun, Hu Wei, Fu Xi-Quan, Lu Da-Quan, Zheng Yi-Zhou. The production and elimination of the spatial singularity for ultrashort chirp ed pulse-beam propagation in free space. Acta Physica Sinica, 2003, 52(8): 1920-1924. doi: 10.7498/aps.52.1920
    [20] ZHAO DAO-MU, WANG SHAO-MIN. MISALIGNED FRACTIONAL FOURIER TRANSFORMS AND THEIR OPTICAL IMPLEMENTATION. Acta Physica Sinica, 2001, 50(10): 1935-1938. doi: 10.7498/aps.50.1935
Metrics
  • Abstract views:  6633
  • PDF Downloads:  350
  • Cited By: 0
Publishing process
  • Received Date:  06 April 2016
  • Accepted Date:  31 July 2016
  • Published Online:  05 October 2016

/

返回文章
返回
Baidu
map