Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Perturbed solution and analyses for single photon transmission equation in optical fiber

Tao Zai-Hong Qin Yuan-Yuan Sun Bing Sun Xiaohan

Citation:

Perturbed solution and analyses for single photon transmission equation in optical fiber

Tao Zai-Hong, Qin Yuan-Yuan, Sun Bing, Sun Xiaohan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • As is well known, quantum optics has developed significantly in recent years and advanced several hot research topics, such as quantum communications, quantum sensing, quantum calculations, etc. Among these researches, it is important to understand the quantum information transmitting in optical fiber. For realizing longer transmission distance and better transmission quality, great effort has devoted to the researches of encoding and decoding at the transmitter and the receiver end. However, less attention was paid to the fading of signal in the transmission channel. In this work, we mainly focus on the transmission model of optical quantum transmission and the influences of loss, dispersion and nonlinear effect on fiber transmission of optical quantum information are also discussed.Quantum information transmission can be influenced by loss, dispersion and nonlinear effect in optical fiber, leading to transmission state evolution and energy transfer. Based on the transmission equation of single mode fiber and quantum theory of electromagnetic field, the fundamental mode field of single mode fiber is quantized. A quantum transmission equation is deduced from the classical optical transmission equation through quantizing the amplitude of electromagnetic field. Compared with classic wave theory, the photon transmission equation quantizing the slowly-varying amplitude in the coupled nonlinear Schrdinger equation is obtained. In the classic wave equation, light is interpreted as energy which propagates as waves. The photon transmission equation is obtained by quantizing the slowly-varying amplitude of light, that is, the particle nature of light. The energy propagates through alternative interaction between creation and annihilation operator on photons. The transmission equations show that photons will interact with the transmission medium during propagation and be influenced by dispersion, nonlinear effect, loss, etc. By giving a trail solution and introducing a perturbation term, the transmission equation is solved for the complicated case where the dispersion, loss and nonlinear effect are all involved. A dispersion equation that should be satisfied for nontrivial solution is then obtained. From this dispersion equation, the relation between photon power and perturbation frequency is calculated and analyzed. The change of photon power in generalized field with perturbation frequency is discussed, and the influences of fiber dispersion and nonlinearity on the solution are analyzed.Some conclusions are obtained by perturbed solution and analyses of single photon transmission equation in optical fiber. It is found that photon power decreases with the increase of perturbation frequency and reaches its maximum value for zero perturbation frequency. At the same time, the optical power is affected by the dispersion of the optical fiber. Photon power decreases with the GVD coefficient far from the zero dispersion point. It is also found that photon power decreases with the increase of nonlinear coefficient. This work may contribute to the research of the properties of quantum fiber transmission system.
      Corresponding author: Sun Xiaohan, xhsun@seu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 60271206).
    [1]

    Vance R W C 2007 J. Opt. Soc. Am. B 24 000928

    [2]

    Vance R W C 2007 J. Opt. Soc. Am. B 24 000942

    [3]

    Andres R P, Bein T, Dorogi T, Feng S, Henderson J I 1996 Science 272 1323

    [4]

    Datta S, Tian W 1997 Phys. Rev. B 55 R1914

    [5]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407

    [6]

    Wang L G, Chen L, Yu D W, Li Y 2007 Acta Phys. Sin. 56 6526 (in Chinese) [王利光, 陈蕾, 郁鼎文, 李勇 2007 56 6526]

    [7]

    Wang C, Huo X X, Zhang X M, Wang L G 2010 Acta Phys. Sin. 59 4955 (in Chinese) [王畅, 霍新霞, 张秀梅, 王利光 2010 59 4955]

    [8]

    Pirandola S, Braunstein S L, Mancini S, Lloyd S 2008 Eur. Phys. Lett. 84 20013

    [9]

    Meslouhi A, Hassouni Y 2013 Quantum Inf. Process. 12 2603

    [10]

    Wang C, Deng F G, Long G L 2005 Opt. Commun. 253 15

    [11]

    Shi J, Gong Y X, Xu P, Zhu Y B 2011 Commun. Theor. Phys. 56 83

    [12]

    Banerjee A, Patha A 2012 Phys. Lett. A 376 2944

    [13]

    Li X H, Zeng Z, Wang C 2014 J. Opt. Soc. Am. B 31 002334

    [14]

    Wang T J, Song S Y, Long G L 2012 Phys. Rev. A 85 062311

    [15]

    Rebentrost P, Mohseni M, Kassal I, Lloyd S 2009 New J. Phys. 11 033003

    [16]

    Chin A, Datta A, Caruso F, Huelga S 2010 New J. Phys. 12 065002

    [17]

    Bartlett S D, Munro W J 2003 Phys. Rev. Lett. 90 117901

    [18]

    Pan J W, Bouwmeester D, Weinfurter H, Zeilinger A 1998 Phys. Rev. Lett. 80 3891

    [19]

    Inagaki T, Matsuda N, Tadanaga O, Asobe M, Takesue H 2013 Opt. Express 21 23241

    [20]

    Bouwmeester D, Pan J W, Mattle K, Weinfurtor H, Zeiling A 1997 Nature 390 575

    [21]

    Liu J, Wang Q, Kuang L M, Zeng H S 2010 Chin. Phys. B 19 030313

    [22]

    Zhou N R, Zeng B Y, Wang L J, Gong L H 2010 Acta Phys. Sin. 59 2193 (in Chinese) [周南润, 曾宾阳, 王立军, 龚黎华 2010 59 2193]

    [23]

    Ma X S, Herbst T, Scheidl T, Wang D Q, Kropatschek S, Naylor W, Wittmann B, Mech A, Kofler J, Anisimona E, Makarov V, Jennewein T, Ursin R, Zeilinger A 2012 Nature 489 7415

    [24]

    Inagaki T, Matsuda N, Tadanaga O, Takesue H 2013 Opt. Expess 21 23241

    [25]

    Tang Y L, Yin H L, Chen S J, Liu Y, Zhang W J, Jiang X, Zhang L, Wang J, You L X, Guan J Y, Yang D X, Wang Z, Liang H, Zhang Z, Zhou N, Ma X F, Chen T Y, Zhang Q, Pan J W 2014 Phys. Rev. Lett. 113 190501

    [26]

    Filippo C, Francesco M, Hammam Q, Ebrahim K, Sergei S, Domenico P, Corrado L, Fabio S, Enrico S, Robert W B, Lorenzo M 2015 Sci. Adv. 1 1500087

    [27]

    Martin P, Tomas T, Tomas C 2015 Natue Photonics 9 529

  • [1]

    Vance R W C 2007 J. Opt. Soc. Am. B 24 000928

    [2]

    Vance R W C 2007 J. Opt. Soc. Am. B 24 000942

    [3]

    Andres R P, Bein T, Dorogi T, Feng S, Henderson J I 1996 Science 272 1323

    [4]

    Datta S, Tian W 1997 Phys. Rev. B 55 R1914

    [5]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407

    [6]

    Wang L G, Chen L, Yu D W, Li Y 2007 Acta Phys. Sin. 56 6526 (in Chinese) [王利光, 陈蕾, 郁鼎文, 李勇 2007 56 6526]

    [7]

    Wang C, Huo X X, Zhang X M, Wang L G 2010 Acta Phys. Sin. 59 4955 (in Chinese) [王畅, 霍新霞, 张秀梅, 王利光 2010 59 4955]

    [8]

    Pirandola S, Braunstein S L, Mancini S, Lloyd S 2008 Eur. Phys. Lett. 84 20013

    [9]

    Meslouhi A, Hassouni Y 2013 Quantum Inf. Process. 12 2603

    [10]

    Wang C, Deng F G, Long G L 2005 Opt. Commun. 253 15

    [11]

    Shi J, Gong Y X, Xu P, Zhu Y B 2011 Commun. Theor. Phys. 56 83

    [12]

    Banerjee A, Patha A 2012 Phys. Lett. A 376 2944

    [13]

    Li X H, Zeng Z, Wang C 2014 J. Opt. Soc. Am. B 31 002334

    [14]

    Wang T J, Song S Y, Long G L 2012 Phys. Rev. A 85 062311

    [15]

    Rebentrost P, Mohseni M, Kassal I, Lloyd S 2009 New J. Phys. 11 033003

    [16]

    Chin A, Datta A, Caruso F, Huelga S 2010 New J. Phys. 12 065002

    [17]

    Bartlett S D, Munro W J 2003 Phys. Rev. Lett. 90 117901

    [18]

    Pan J W, Bouwmeester D, Weinfurter H, Zeilinger A 1998 Phys. Rev. Lett. 80 3891

    [19]

    Inagaki T, Matsuda N, Tadanaga O, Asobe M, Takesue H 2013 Opt. Express 21 23241

    [20]

    Bouwmeester D, Pan J W, Mattle K, Weinfurtor H, Zeiling A 1997 Nature 390 575

    [21]

    Liu J, Wang Q, Kuang L M, Zeng H S 2010 Chin. Phys. B 19 030313

    [22]

    Zhou N R, Zeng B Y, Wang L J, Gong L H 2010 Acta Phys. Sin. 59 2193 (in Chinese) [周南润, 曾宾阳, 王立军, 龚黎华 2010 59 2193]

    [23]

    Ma X S, Herbst T, Scheidl T, Wang D Q, Kropatschek S, Naylor W, Wittmann B, Mech A, Kofler J, Anisimona E, Makarov V, Jennewein T, Ursin R, Zeilinger A 2012 Nature 489 7415

    [24]

    Inagaki T, Matsuda N, Tadanaga O, Takesue H 2013 Opt. Expess 21 23241

    [25]

    Tang Y L, Yin H L, Chen S J, Liu Y, Zhang W J, Jiang X, Zhang L, Wang J, You L X, Guan J Y, Yang D X, Wang Z, Liang H, Zhang Z, Zhou N, Ma X F, Chen T Y, Zhang Q, Pan J W 2014 Phys. Rev. Lett. 113 190501

    [26]

    Filippo C, Francesco M, Hammam Q, Ebrahim K, Sergei S, Domenico P, Corrado L, Fabio S, Enrico S, Robert W B, Lorenzo M 2015 Sci. Adv. 1 1500087

    [27]

    Martin P, Tomas T, Tomas C 2015 Natue Photonics 9 529

  • [1] Zhou Kang, Li Hua, Wan Wen-Jian, Li Zi-Ping, Cao Jun-Cheng. Group velocity dispersion analysis of terahertz quantum cascade laser frequency comb. Acta Physica Sinica, 2019, 68(10): 109501. doi: 10.7498/aps.68.20190217
    [2] Lü Zhi-Guo, Yang Zhi, Li Feng, Li Qiang-Long, Wang Yi-Shan, Yang Xiao-Jun. Generation of multi-wavelength femtosecond laser pulse based on nonlinear propagation of high peak power ultrashort laser pulse in single-mode fiber and spectral selectivity technology. Acta Physica Sinica, 2018, 67(18): 184205. doi: 10.7498/aps.67.20181026
    [3] Zhang Ling-Xiang, Wei Wei, Zhang Zhi-Ming, Liao Wen-Ying, Yang Zhen-Guo, Fan Wan-De, Li Yi-Gang. Propagation properties of vortex beams in a ring photonic crystal fiber. Acta Physica Sinica, 2017, 66(1): 014205. doi: 10.7498/aps.66.014205
    [4] Wang Xin, Lou Shu-Qin, Lian Zheng-Gang. Experimental research on the dispersion property of hollow core photonic bandgap fiber. Acta Physica Sinica, 2016, 65(19): 194212. doi: 10.7498/aps.65.194212
    [5] Li Zheng-Ying, Sun Wen-Feng, Li Zi-Mo, Wang Hong-Hai. A demodulation method of high-speed fiber Bragg grating based on dispersion-compensating fiber. Acta Physica Sinica, 2015, 64(23): 234207. doi: 10.7498/aps.64.234207
    [6] Chen Xiang, Zhang Xin-Ben, Zhu Xian, Cheng Lan, Peng Jing-Gang, Dai Neng-Li, Li Hai-Qing, Li Jin-Yan. Effects of structure parameters on the dispersion properties of dispersion compensation photonic crystal fiber. Acta Physica Sinica, 2013, 62(4): 044222. doi: 10.7498/aps.62.044222
    [7] Wang Wei, Yang Bo, Song Hong-Ru, Fan Yue. Characteristic analyses of high birefringence and two zero dispersion points photonic crystal fiber with octagonal lattices. Acta Physica Sinica, 2012, 61(14): 144601. doi: 10.7498/aps.61.144601
    [8] Wang Wei, Yang Bo. Dispersion and birefringence analysis of photonic crystal fiber with rhombus air-core structure. Acta Physica Sinica, 2012, 61(6): 064601. doi: 10.7498/aps.61.064601
    [9] Yan Hai-Feng, Yu Zhong-Yuan, Tian Hong-Da, Liu Yu-Min, Han Li-Hong. Investigation on propagation and nonlinearity of an octagonal photonic crystal fiber. Acta Physica Sinica, 2010, 59(5): 3273-3277. doi: 10.7498/aps.59.3273
    [10] Zhao Yan, Shi Wei-Hua, Jiang Yue-Jin. Effect of defects outside the centre on dispersive properties of photonic band gap guiding photonic crystal fibers. Acta Physica Sinica, 2010, 59(9): 6279-6283. doi: 10.7498/aps.59.6279
    [11] Huang Xiao-Dong, Zhang Xiao-Min, Wang Jian-Jun, Xu Dang-Peng, Zhang Rui, Lin Hong-Huan, Deng Ying, Geng Yuan-Chao, Yu Xiao-Qiu. The effect of dispersion on FM-AM coversion in high power laser front end. Acta Physica Sinica, 2010, 59(3): 1857-1862. doi: 10.7498/aps.59.1857
    [12] Li Lin-Li, Feng Guo-Ying, Yang Hao, Zhou Guo-Rui, Zhou Hao, Zhu Qi-Hua, Wang Jian-Jun, Zhou Shou-Huan. Dispersion properties and supercontinuum generation in nanofiber. Acta Physica Sinica, 2009, 58(10): 7005-7011. doi: 10.7498/aps.58.7005
    [13] Wang Shi-He, Ren Li-Yong, Liu Yu. Theoretical study on stimulated-Brillouin-scattering gain-spectrum broadening and pulse-distortion reduction of slow-light propagation using double broadband pump in optical fibers. Acta Physica Sinica, 2009, 58(6): 3943-3948. doi: 10.7498/aps.58.3943
    [14] Zhao Xing-Tao, Hou Lan-Tian, Liu Zhao-Lun, Wang Wei, Wei Hong-Yan, Ma Jing-Rui. Dispersion analysis of photonic crystal fiber using improved full-vectorial effective index method. Acta Physica Sinica, 2007, 56(4): 2275-2280. doi: 10.7498/aps.56.2275
    [15] Zhang De Sheng, Dong Xiao Yi, Zhang Wei-Gang, Wang Zhi. Studies on the dispersion in photonic crystal fiber using the step effective index model. Acta Physica Sinica, 2005, 54(3): 1235-1240. doi: 10.7498/aps.54.1235
    [16] Li Shu-Guang, Zhou Gui-Yao, Xing Guang-Long, Hou Lan-Tian, Wang Qing-Yue, Li Yan-Feng, Hu Ming-Lie. Numerical simulation on ultrashort laser pulses propagating in microstructure fi bers. Acta Physica Sinica, 2005, 54(4): 1599-1606. doi: 10.7498/aps.54.1599
    [17] Song Feng, Su Rui-Yuan, Fu Qiang, Qin Bin, Tian Jian-Guo, Zhang Guang-Yin. Gain characteristics of high-concentration Er3+/Yb3+-codoped phosphate fiber amplifier. Acta Physica Sinica, 2005, 54(11): 5228-5232. doi: 10.7498/aps.54.5228
    [18] Li Shu-Guang, Liu Xiao-Dong, Hou Lan-Tian. Vector analysis of dispersion for the fundamental cladding mode in photonic crystal fibers. Acta Physica Sinica, 2004, 53(6): 1873-1879. doi: 10.7498/aps.53.1873
    [19] Li Shu-Guang, Liu Xiao-Dong, Hou Lan-Tian. Numerical study on dispersion compensating property in photonic crystal fibers. Acta Physica Sinica, 2004, 53(6): 1880-1886. doi: 10.7498/aps.53.1880
    [20] Ren Guo-Bin, Wang Zhi, Lou Shu-Qin, Jian Shui-Sheng. Dispersion properties of high-index-core Bragg fibers. Acta Physica Sinica, 2004, 53(6): 1862-1867. doi: 10.7498/aps.53.1862
Metrics
  • Abstract views:  7162
  • PDF Downloads:  613
  • Cited By: 0
Publishing process
  • Received Date:  05 March 2016
  • Accepted Date:  03 April 2016
  • Published Online:  05 July 2016

/

返回文章
返回
Baidu
map