Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Comparative study on the spatial evolution of liquid jet under linear and nonlinear stability theories

Lü Ming Ning Zhi Yan Kai

Citation:

Comparative study on the spatial evolution of liquid jet under linear and nonlinear stability theories

Lü Ming, Ning Zhi, Yan Kai
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In the injecting process of liquid jet, the disturbance wave on jet interface will grow continually, leading to the spatial development and atomization of liquid jet. Studying the spatial evolution of liquid jet will help to deepen the understanding of the mechanism of jet breakup and atomization. In this paper, based on the linear and nonlinear stability theories, the first-order and second-order dispersion equations describing the stability of liquid jet with cavitation bubbles in a coaxial swirling compressible airstream are built, respectively, and the dispersion equation and its solving method are verified by the data in the literature. On this basis, the developments of first-order and second-order disturbance are analyzed, and the spatial evolutions of liquid jet are compared under linear and nonlinear stability theories. The results show that the wavelength and amplitude of the second-order disturbance are much smaller than those of the first-order disturbance. The disturbance development on jet surface is mainly dominated by the development of the first-order disturbance along the axial direction. With the increasing of axial distance, the second-order disturbance gradually begins to play a role in the developing of disturbance. The role of second-order disturbance is mainly reflected in three aspects, i. e., obviously increasing the disturbance amplitude at wave crest, reducing the disturbance amplitude at wave trough (sometimes ups and downs occur), and changing the waveform to a certain degree. The dominant disturbance mode on jet surface will not change under two kinds of theories. By using the nonlinear stability theory, satellite droplets which are found on jet surface in experiments can be reflected, and the shape of main droplet changes obviously from the ellipsoid to sphere. Also, the change of dimensionless radius of liquid jet is greater by nonlinear stability theory than by linear stability theory, which indicates that the oscillation extent of jet surface increases due to considering the second-order disturbance. Therefore, compared with the linear stability theory, the nonlinear stability theory has the advantage that it considers the effects of high-order disturbance on the spatial evolution of liquid jet in addition to the first-order disturbance on jet surface. The nonlinear stability theory can predict the spatial development of liquid jet in more detail than the linear stability theory.
      Corresponding author: Ning Zhi, zhining@bjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51276011), the Natural Science Foundation of Beijing, China (Grant No. 3132016), the China Postdoctoral Science Foundation (Grant No. 2016M591061), and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. 2016JBM049).
    [1]

    Yi S J 1996 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese) [易世君 1996 博士学位论文(大连: 大连理工大学)]

    [2]

    Zhou Z W, Lin S P 1992 J. Propul. Power 8 736

    [3]

    Ozgen S, Uzol O 2012 J. Fluid Eng. 134 1

    [4]

    Turner M R, Sazhin S S, Healey J J 2012 Fuel 97 288

    [5]

    Liang X, Deng D S, Nave J C 2011 J. Fluid Mech. 683 235

    [6]

    Cao J M 2014 J. Circ. Syst. 2 165 (in Chinese) [曹建明 2014 新能源进展 2 165]

    [7]

    Jazayeri S A, Li X G 2000 J. Fluid Mech. 406 281

    [8]

    Yang L J, Wang C, Fu Q F 2013 J. Fluid Mech. 735 249

    [9]

    Yuen M C 1968 J. Fluid Mech. 33 151

    [10]

    Nayfeh A H 1970 Phys. Fluids 13 841

    [11]

    Lafrance P 1975 Phys. Fluids 18 428

    [12]

    Ibrahim A A, Jog M A 2006 Phys. Fluids 18 114101

    [13]

    Ibrahim A A, Jog M A 2008 Int. J. Multiphase Flow 34 647

    [14]

    Rangel R H, Sirignano W A 1988 Phys. Fluids 31 1845

    [15]

    Lozano A, Olivares A G, Dopazo C 1998 Phys. Fluids 10 2188

    [16]

    Ibrahim E A, Lin S P 1992 J. Appl. Mech. 59 291

    [17]

    Tharakan T J, Ramamurthi K, Balakrishnan M 2002 Acta Mech. 156 29

    [18]

    Ibrahim A A 2006 Ph. D. Dissertation (Cincinnati: University of Cincinnati)

    [19]

    Yan K, Jog M A, Ning Z 2013 Acta Mech. 224 3071

    [20]

    Hadji L, Schreiber W 2007 J. Phys. Nat. Sci. 1 1

    [21]

    Potter M C, Wiggert D C 2009 Mechanics of Fluids (3rd Ed.) (Stamford: Cengage Learning) p213

    [22]

    Lin S P 2003 Breakup of Liquid Sheets and Jets (Cambridge: Cambridge University Press) p109

    [23]

    Zhou H, Zhao G F 2004 Hydrodynamic Stability (Beijing: National Defence Industry Press) p23 (in Chinese) [周恒, 赵耕夫 2004 流动稳定性 (北京: 国防工业出版社) 第23页]

    [24]

    Li Q Y, Wang N C, Yi D Y 2008 Numerical Analysis (Beijing: Tsinghua University Press) p228 (in Chinese) [李庆扬, 王能超, 易大义 2008 数值分析 (第5版) (北京: 清华大学出版社) 第228页]

    [25]

    Lin S P, Lian Z W 1990 AIAA J. 28 120

    [26]

    Sallam K A, Dai Z, Faeth G M 2002 Int. J. Multiphase Flow 28 427

  • [1]

    Yi S J 1996 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese) [易世君 1996 博士学位论文(大连: 大连理工大学)]

    [2]

    Zhou Z W, Lin S P 1992 J. Propul. Power 8 736

    [3]

    Ozgen S, Uzol O 2012 J. Fluid Eng. 134 1

    [4]

    Turner M R, Sazhin S S, Healey J J 2012 Fuel 97 288

    [5]

    Liang X, Deng D S, Nave J C 2011 J. Fluid Mech. 683 235

    [6]

    Cao J M 2014 J. Circ. Syst. 2 165 (in Chinese) [曹建明 2014 新能源进展 2 165]

    [7]

    Jazayeri S A, Li X G 2000 J. Fluid Mech. 406 281

    [8]

    Yang L J, Wang C, Fu Q F 2013 J. Fluid Mech. 735 249

    [9]

    Yuen M C 1968 J. Fluid Mech. 33 151

    [10]

    Nayfeh A H 1970 Phys. Fluids 13 841

    [11]

    Lafrance P 1975 Phys. Fluids 18 428

    [12]

    Ibrahim A A, Jog M A 2006 Phys. Fluids 18 114101

    [13]

    Ibrahim A A, Jog M A 2008 Int. J. Multiphase Flow 34 647

    [14]

    Rangel R H, Sirignano W A 1988 Phys. Fluids 31 1845

    [15]

    Lozano A, Olivares A G, Dopazo C 1998 Phys. Fluids 10 2188

    [16]

    Ibrahim E A, Lin S P 1992 J. Appl. Mech. 59 291

    [17]

    Tharakan T J, Ramamurthi K, Balakrishnan M 2002 Acta Mech. 156 29

    [18]

    Ibrahim A A 2006 Ph. D. Dissertation (Cincinnati: University of Cincinnati)

    [19]

    Yan K, Jog M A, Ning Z 2013 Acta Mech. 224 3071

    [20]

    Hadji L, Schreiber W 2007 J. Phys. Nat. Sci. 1 1

    [21]

    Potter M C, Wiggert D C 2009 Mechanics of Fluids (3rd Ed.) (Stamford: Cengage Learning) p213

    [22]

    Lin S P 2003 Breakup of Liquid Sheets and Jets (Cambridge: Cambridge University Press) p109

    [23]

    Zhou H, Zhao G F 2004 Hydrodynamic Stability (Beijing: National Defence Industry Press) p23 (in Chinese) [周恒, 赵耕夫 2004 流动稳定性 (北京: 国防工业出版社) 第23页]

    [24]

    Li Q Y, Wang N C, Yi D Y 2008 Numerical Analysis (Beijing: Tsinghua University Press) p228 (in Chinese) [李庆扬, 王能超, 易大义 2008 数值分析 (第5版) (北京: 清华大学出版社) 第228页]

    [25]

    Lin S P, Lian Z W 1990 AIAA J. 28 120

    [26]

    Sallam K A, Dai Z, Faeth G M 2002 Int. J. Multiphase Flow 28 427

  • [1] Qiu Hai-Jian, Hu Yu-Lu, Hu Quan, Zhu Xiao-Fang, Li Bin. Nonlinear theory considering harmonic interaction using Eulerian hydrodynamic analysis. Acta Physica Sinica, 2018, 67(8): 088401. doi: 10.7498/aps.67.20180024
    [2] SHA Sha, Chen Zhi-Hua, Zhang Qing-Bing. Numerical investigations on the interaction of shock waves with spherical SF6 bubbles. Acta Physica Sinica, 2015, 64(1): 015201. doi: 10.7498/aps.64.015201
    [3] Gu Yun-Qing, Mou Jie-Gang, Dai Dong-Shun, Zheng Shui-Hua, Jiang Lan-Fang, Wu Deng-Hao, Ren Yun, Liu Fu-Qing. Characteristics on drag reduction of bionic jet surface based on earthworm's back orifice jet. Acta Physica Sinica, 2015, 64(2): 024701. doi: 10.7498/aps.64.024701
    [4] Liu Yun-Long, Zhang A-Man, Wang Shi-Ping, Tian Zhao-Li. Study on bubble dynamics near plate with hole based on boundary element method. Acta Physica Sinica, 2013, 62(14): 144703. doi: 10.7498/aps.62.144703
    [5] Wang Shi-Ping, Zhang A-Man, Liu Yun-Long, Wu Chao. Experimental research on bubble dynamics near circular hole of plate. Acta Physica Sinica, 2013, 62(6): 064703. doi: 10.7498/aps.62.064703
    [6] Zhang A-Man, Xiao Wei, Wang Shi-Ping, Cheng Xiao-Ou. Experimental study of the interactions between a pulsating bubble and sand particles with different diameters. Acta Physica Sinica, 2013, 62(1): 014703. doi: 10.7498/aps.62.014703
    [7] Sha Sha, Chen Zhi-Hua, Xue Da-Wen. The generation of jet and mixing induced by the interaction of shock wave with R22 cylinder. Acta Physica Sinica, 2013, 62(14): 144701. doi: 10.7498/aps.62.144701
    [8] Liang Gang-Tao, Guo Ya-Li, Shen Sheng-Qiang. Analysis of liquid sheet and jet flow mechanism after droplet impinging onto liquid film. Acta Physica Sinica, 2013, 62(2): 024705. doi: 10.7498/aps.62.024705
    [9] Bai Chun-Jiang, Li Jian-Qing, Hu Yu-Lu, Yang Zhong-Hai, Li Bin. Calculation of beam-wave interaction of coupled-cavity TWT using equivalent circuit model. Acta Physica Sinica, 2012, 61(17): 178401. doi: 10.7498/aps.61.178401
    [10] Ma Jun-Jian, Zhu Xiao-Fang, Jin Xiao-Lin, Hu Yu-Lu, Li Jian-Qing, Yang Zhong-Hai, Li Bin. A time-dependent nonlinear theory and simulation for gyroklystron amplifier. Acta Physica Sinica, 2012, 61(20): 208402. doi: 10.7498/aps.61.208402
    [11] Guo Jian-Hua, Yu Sheng, Li Hong-Fu, Zhang Tian-Zhong, Lei Chao-Jun, Li Xiang, Zhang Yan-Yan. Transient nonlinear theory and model of beam-wave interaction for gyroklystron. Acta Physica Sinica, 2011, 60(9): 090301. doi: 10.7498/aps.60.090301
    [12] Liu Jing, Shu Ting, Li Zhi-Qiang. Nonlinear analysis on electron beam current in cylindrical waveguide. Acta Physica Sinica, 2010, 59(4): 2622-2628. doi: 10.7498/aps.59.2622
    [13] Du Chao-Hai, Liu Pu-Kun, Xue Qian-Zhong. Beam-wave interaction analysis of gyrotron-traveling-wave tube based on a lossy dielectric-lined waveguide. Acta Physica Sinica, 2010, 59(7): 4612-4619. doi: 10.7498/aps.59.4612
    [14] Zhang A-Man, Yao Xiong_Liang, Li Jia. The dynamics of bubbles. Acta Physica Sinica, 2008, 57(3): 1672-1682. doi: 10.7498/aps.57.1672
    [15] Wang Chen, Fang Zhi-Heng, Sun Jin-Ren, Wang Wei, Xiong Jun, Ye Jun-Jian, Fu Si-Zu, Gu Yuan, Wang Shi-Ji, Zhen Wu-Di, Ye Wen-Hua, Qiao Xiu-Mei, Zhang Guo-Ping. Experimental diagnosis of plasma jets by using an X-ray laser. Acta Physica Sinica, 2008, 57(12): 7770-7775. doi: 10.7498/aps.57.7770
    [16] Zhang Ya-Xin, Zhu Da-Jun, Liu Sheng-Gang, Wang E-Feng. The linear theory of helically corrugated gyro-TWT. Acta Physica Sinica, 2006, 55(9): 4535-4541. doi: 10.7498/aps.55.4535
    [17] Tang Chang-Jian, Qian Shang-Jie. . Acta Physica Sinica, 2002, 51(6): 1256-1261. doi: 10.7498/aps.51.1256
    [18] Yang Zhong-Hai, Peng Liang-Fu, Liu Sheng-Gang. . Acta Physica Sinica, 1995, 44(7): 1064-1072. doi: 10.7498/aps.44.1064
    [19] YANG GUANG-CAN. THE NONLINEAR THEORY OF INTERACTION BETWEEN LIGHT AND MATTER DESCRIBED BY q-DEFOR- MED OSCILLATOR MODEL. Acta Physica Sinica, 1994, 43(4): 521-529. doi: 10.7498/aps.43.521
    [20] HU NING-HAI, LIU YONG-SHENG, ZHOU QING-LIAN, GUO DONG-YAO. THE APPLICATION OF ∑ RELATIONSHIP LINEAR THEORY (Ⅱ)—— THE PROBLEM OF APPLICATION OF ∑7, RELATIONSHIP. Acta Physica Sinica, 1987, 36(2): 140-148. doi: 10.7498/aps.36.140
Metrics
  • Abstract views:  5982
  • PDF Downloads:  200
  • Cited By: 0
Publishing process
  • Received Date:  15 March 2016
  • Accepted Date:  06 June 2016
  • Published Online:  05 August 2016

/

返回文章
返回
Baidu
map