搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑谐波互作用的行波管欧拉非线性理论模型

邱海舰 胡玉禄 胡权 朱小芳 李斌

引用本文:
Citation:

考虑谐波互作用的行波管欧拉非线性理论模型

邱海舰, 胡玉禄, 胡权, 朱小芳, 李斌

Nonlinear theory considering harmonic interaction using Eulerian hydrodynamic analysis

Qiu Hai-Jian, Hu Yu-Lu, Hu Quan, Zhu Xiao-Fang, Li Bin
PDF
导出引用
  • 基于拉格朗日体系的考虑谐波互作用的理论模型,将离散的粒子近似处理为流体,得到电子相位的连续分布函数.对电子相位连续分布函数进行傅里叶一阶展开,并结合贝塞尔母函数关系式,建立了考虑谐波互作用的欧拉非线性理论模型.应用考虑谐波互作用的欧拉非线性理论模型对一支L波段空间行波管和一支C波段空间行波管进行大信号分析,并与拉格朗日理论模型进行对比.结果表明:在增益1 dB压缩点之前,考虑谐波互作用的欧拉非线性理论模型与拉格朗日理论模型十分符合,增益最大误差不超过4%.考虑谐波互作用的欧拉非线性理论模型能够有效的对增益1 dB压缩点之前的谐波进行分析.仿真结果验证了考虑谐波互作用的欧拉非线性理论模型的正确性和有效性.考虑谐波互作用的欧拉非线性理论不但提供了一个谐波快速计算模型,而且为后续研究行波管谐波的产生机理与抑制方法奠定了基础.
    Traveling wave tube amplifiers are one of the most widely used vacuum electronic devices which are employed in various applications, in the areas of such as radar, wireless communication and electronic countermeasures system. Among traveling wave tubes, space-borne helix traveling wave tubes which are of high power, high efficiency, high reliability, long life and radiation hardened, are extensively used in satellite transmitter, data communication system and global positioning system. With the rapid development of the multiphase digital modulation schemes, communication systems are placing greater demands on the output power, electronic efficiency and nonlinear distortion characteristics of space-borne helix traveling wave tubes. However, the nonlinear beam-wave interaction will lead to the generation of harmonics, and thus reduces the output power and electronic efficiency. The harmonics can also act to create beats with the fundamental wave, and thus generate these beat frequencies which are commonly known as intermodulation products. As a result, the bit-error-rate will be increased and the system performance will be compromised. Therefore, the generation of harmonics is of significant current interest in space-borne helix traveling wave tubes. Understanding this effect provides a strong motivation for nonlinear analysis of a helix traveling wave tube. In this paper, a continuous electron phase distribution is obtained by treating the discrete electron beam as a charge fluid based on the Lagrangian theory. Then, to obtain a nonlinear Eulerian theory considering harmonic interaction, the electron phases in Lagrangian theory have been expanded into a series of harmonic components. Considering the 0th component and 1st component of the electron phases only and integrating over the initial phase distribution with the help of the relation of Bessel function, the nonlinear Eulerian theory considering harmonic interaction is established. The nonlinear Eulerian theory considering harmonic interaction is compared to a Lagrangian theory on a set of traveling wave tube parameters which are based on a single section of L-and C-bands traveling wave tubes. It is found that the nonlinear Eulerian theory considering harmonic interaction agrees accords well with the Lagrangian theory before the saturation effect occurs. But, it begins to make a difference near saturation point where the electron overtaking happens. The maximum error in gain between the nonlinear Eulerian theory considering harmonic interaction and the Lagrangian theory is less than 4% at 1 dB gain compression point. So the present nonlinear Eulerian theory considering harmonic interaction can effectively describe harmonic generation at 1 dB gain compression point. The simulation results validate the correctness and effectiveness of our nonlinear Eulerian theory considering harmonic interaction. In futuristic future efforts, it is hoped that the present nonlinear Eulerian theory considering harmonic interaction may provide insights into the behavioral mechanisms of nonlinear effects in space-borne helix traveling wave tubes.
      通信作者: 胡玉禄, yuluhu@uestc.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61771105)和中央高校基本科研业务费(批准号:ZYGX2016J065,ZYGX2016J066)资助的课题.
      Corresponding author: Hu Yu-Lu, yuluhu@uestc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61771105) and the Fundamental Research Funds for the Central Universities, China (Grant Nos. ZYGX2016J065, ZYGX2016J066).
    [1]

    Abe D K, Levush B, Antonsen Jr T M, Whaley D R 2002 IEEE Trans. Plasma Sci. 30 1053

    [2]

    Whaley D R, Armstrong C M, Gannon B, Groshart G 1998 IEEE Trans. Plasma Sci. 26 912

    [3]

    Abe D K, Levush B, Antonsen Jr T M, Whaley D R 2002 Proceedings of the Vacuum Electronics Conference Monterey, CA, USA, April 25-25, 2002 p312

    [4]

    Katz A 2009 Microwave Magazine IEEE 2 37

    [5]

    Qiu J, Abe D, Antonsen Jr T M, Danly B G, Levush B 2002 Proceedings of the Microwave Symposium Digest Monterey USA, April 25-25, 2002 p457

    [6]

    Qiu J X, Abe D K, Antonsen Jr T M, Danly B G 2003 IEEE Trans. Microwave Theory Tech. 51 1911

    [7]

    Lau Y Y, Chernin D P, Wilsen C, Gilgenbach R M 2000 IEEE Trans. Plasma Sci. 28 959

    [8]

    Bai A Y, Zou C M, Mo Y L 1996 Journal of University of Electronic Science and Technology of China 25 43 (in Chinese)[白安永, 邹长民, 莫元龙 1996 电子科技大学学报 25 43]

    [9]

    Mo Y L, Xie Z L 1996 Journal of University of Electronic Science and Technology of China 25 625 (in Chinese)[莫元龙, 谢仲怜 1996 电子科技大学学报 25 625]

    [10]

    Dionne N J 1970 IEEE Trans. Electron Dev. 17 365

    [11]

    Li B, Yang Z H, Li J Q, Zhu X F, Huang T, Jin X L, Hu Q, Hu Y L, Xu L, Ma J J, Peng W F, Liao L, Xiao L, He G X 2009 IEEE Trans. Electron Dev. 56 919

    [12]

    Li B, Li J Q, Hu Q, Hu Y L, Xu L, Huang T, Jin X L, Zhu X F, Yang Z H 2014 IEEE Trans. Electron Dev. 61 1735

    [13]

    Hao B L, Xiao L, Liu P K, Li G C, Jiang Y, Yi H X, Zhou W 2009 Acta Phys. Sin. 58 3118 (in Chinese)[郝保良, 肖刘, 刘濮鲲, 李国超, 姜勇, 易红霞, 周伟 2009 58 3118]

    [14]

    Hu Y L, Yang Z H, Li J Q, Li B, Gao P, Jin X L 2009 Acta Phys. Sin. 58 6665 (in Chinese)[胡玉禄, 杨中海, 李建清, 李斌, 高鹏, 金晓林 2009 58 6665]

    [15]

    Li J Q, Mo Y L 2006 Acta Phys. Sin. 55 4177 (in Chinese)[李建清, 莫元龙 2006 55 4177]

    [16]

    Chernin D, Antonsen Jr T M, Levush B, Whaley D R 2001 IEEE Trans. Electron Dev. 48 3

    [17]

    Duan Z Y, Gong Y B, Wei Y Y, Wang W X 2008 Chin. Phys. B 17 2484

    [18]

    Li B, Yang Z H 2003 Chin. Phys. 12 1235

    [19]

    Booske J H, Converse M C 2004 IEEE Trans. Plasma Sci. 32 1066

    [20]

    Datta S 1998 Inter. J. Electron. 85 377

    [21]

    Datta S, Reddy S, Jain P, Basu B 1999 Inter. J. Infr. Mill. Waves 20 483

    [22]

    Datta S K 2000 Inter. J. Electron. 87 89

    [23]

    Datta S K, Jain P K, Narayan R, Basu B N 1999 IEEE Trans. Electron Dev. 46 420

    [24]

    Whlbier J G, Booske J H, Dobson I 2004 IEEE Trans. Plasma Sci. 32 1073

    [25]

    Whlbier J G, Booske J H, Dobson I 2002 IEEE Trans. Plasma Sci. 30 1063

    [26]

    Whlbier J G, Dobson I, Booske J H 2002 Phys. Rev. E 66 056504

    [27]

    Whlbier J G, Booske J H 2004 Phys. Rev. E 69 066502

    [28]

    Hu Y L 2011 Ph. D. Dissertation (Chengdu:University of Electronic Science and Technology of China) (in Chinese)[胡玉禄 2011 博士学位论文 (成都:电子科技大学)]

    [29]

    Hu Y L, Yang Z H, Li J, Li B 2015 Proceedings of the Vacuum Electronics Conference (IVEC) Beijing, April 27-29, 2015 p1

    [30]

    Dong C F, Zhang P, Chernin D, Lau Y Y 2015 IEEE Trans. Electron Dev. 62 4285

    [31]

    Antonsen Jr T M, Levush B 1998 IEEE Trans. Plasma Sci. 26 774

  • [1]

    Abe D K, Levush B, Antonsen Jr T M, Whaley D R 2002 IEEE Trans. Plasma Sci. 30 1053

    [2]

    Whaley D R, Armstrong C M, Gannon B, Groshart G 1998 IEEE Trans. Plasma Sci. 26 912

    [3]

    Abe D K, Levush B, Antonsen Jr T M, Whaley D R 2002 Proceedings of the Vacuum Electronics Conference Monterey, CA, USA, April 25-25, 2002 p312

    [4]

    Katz A 2009 Microwave Magazine IEEE 2 37

    [5]

    Qiu J, Abe D, Antonsen Jr T M, Danly B G, Levush B 2002 Proceedings of the Microwave Symposium Digest Monterey USA, April 25-25, 2002 p457

    [6]

    Qiu J X, Abe D K, Antonsen Jr T M, Danly B G 2003 IEEE Trans. Microwave Theory Tech. 51 1911

    [7]

    Lau Y Y, Chernin D P, Wilsen C, Gilgenbach R M 2000 IEEE Trans. Plasma Sci. 28 959

    [8]

    Bai A Y, Zou C M, Mo Y L 1996 Journal of University of Electronic Science and Technology of China 25 43 (in Chinese)[白安永, 邹长民, 莫元龙 1996 电子科技大学学报 25 43]

    [9]

    Mo Y L, Xie Z L 1996 Journal of University of Electronic Science and Technology of China 25 625 (in Chinese)[莫元龙, 谢仲怜 1996 电子科技大学学报 25 625]

    [10]

    Dionne N J 1970 IEEE Trans. Electron Dev. 17 365

    [11]

    Li B, Yang Z H, Li J Q, Zhu X F, Huang T, Jin X L, Hu Q, Hu Y L, Xu L, Ma J J, Peng W F, Liao L, Xiao L, He G X 2009 IEEE Trans. Electron Dev. 56 919

    [12]

    Li B, Li J Q, Hu Q, Hu Y L, Xu L, Huang T, Jin X L, Zhu X F, Yang Z H 2014 IEEE Trans. Electron Dev. 61 1735

    [13]

    Hao B L, Xiao L, Liu P K, Li G C, Jiang Y, Yi H X, Zhou W 2009 Acta Phys. Sin. 58 3118 (in Chinese)[郝保良, 肖刘, 刘濮鲲, 李国超, 姜勇, 易红霞, 周伟 2009 58 3118]

    [14]

    Hu Y L, Yang Z H, Li J Q, Li B, Gao P, Jin X L 2009 Acta Phys. Sin. 58 6665 (in Chinese)[胡玉禄, 杨中海, 李建清, 李斌, 高鹏, 金晓林 2009 58 6665]

    [15]

    Li J Q, Mo Y L 2006 Acta Phys. Sin. 55 4177 (in Chinese)[李建清, 莫元龙 2006 55 4177]

    [16]

    Chernin D, Antonsen Jr T M, Levush B, Whaley D R 2001 IEEE Trans. Electron Dev. 48 3

    [17]

    Duan Z Y, Gong Y B, Wei Y Y, Wang W X 2008 Chin. Phys. B 17 2484

    [18]

    Li B, Yang Z H 2003 Chin. Phys. 12 1235

    [19]

    Booske J H, Converse M C 2004 IEEE Trans. Plasma Sci. 32 1066

    [20]

    Datta S 1998 Inter. J. Electron. 85 377

    [21]

    Datta S, Reddy S, Jain P, Basu B 1999 Inter. J. Infr. Mill. Waves 20 483

    [22]

    Datta S K 2000 Inter. J. Electron. 87 89

    [23]

    Datta S K, Jain P K, Narayan R, Basu B N 1999 IEEE Trans. Electron Dev. 46 420

    [24]

    Whlbier J G, Booske J H, Dobson I 2004 IEEE Trans. Plasma Sci. 32 1073

    [25]

    Whlbier J G, Booske J H, Dobson I 2002 IEEE Trans. Plasma Sci. 30 1063

    [26]

    Whlbier J G, Dobson I, Booske J H 2002 Phys. Rev. E 66 056504

    [27]

    Whlbier J G, Booske J H 2004 Phys. Rev. E 69 066502

    [28]

    Hu Y L 2011 Ph. D. Dissertation (Chengdu:University of Electronic Science and Technology of China) (in Chinese)[胡玉禄 2011 博士学位论文 (成都:电子科技大学)]

    [29]

    Hu Y L, Yang Z H, Li J, Li B 2015 Proceedings of the Vacuum Electronics Conference (IVEC) Beijing, April 27-29, 2015 p1

    [30]

    Dong C F, Zhang P, Chernin D, Lau Y Y 2015 IEEE Trans. Electron Dev. 62 4285

    [31]

    Antonsen Jr T M, Levush B 1998 IEEE Trans. Plasma Sci. 26 774

  • [1] 易红霞, 肖刘, 苏小保. 传输矩阵法在行波管内部反射引起的增益波动计算中的应用.  , 2016, 65(12): 128401. doi: 10.7498/aps.65.128401
    [2] 吕明, 宁智, 阎凯. 线性与非线性稳定性理论下液体射流空间发展的对比研究.  , 2016, 65(16): 166801. doi: 10.7498/aps.65.166801
    [3] 颜卫忠, 胡玉禄, 李建清, 杨中海, 田云先, 李斌. 基于三端口网络模型的折叠波导行波管注波互作用理论研究.  , 2014, 63(23): 238403. doi: 10.7498/aps.63.238403
    [4] 刘洋, 徐进, 许雄, 沈飞, 魏彦玉, 黄民智, 唐涛, 王文祥, 宫玉彬. V形曲折矩形槽慢波结构的研究.  , 2012, 61(15): 154208. doi: 10.7498/aps.61.154208
    [5] 刘青伦, 王自成, 刘濮鲲. 基于双排矩形梳状慢波结构的W波段宽频带行波管模拟研究.  , 2012, 61(12): 124101. doi: 10.7498/aps.61.124101
    [6] 赖剑强, 魏彦玉, 许雄, 沈飞, 刘洋, 刘漾, 黄民智, 唐涛, 宫玉彬. 140GHz大功率交错双栅行波管的设计和模拟研究.  , 2012, 61(17): 178501. doi: 10.7498/aps.61.178501
    [7] 马俊建, 朱小芳, 金晓林, 胡玉禄, 李建清, 杨中海, 李斌. 回旋速调管放大器时域非线性理论与模拟.  , 2012, 61(20): 208402. doi: 10.7498/aps.61.208402
    [8] 刘漾, 魏彦玉, 沈飞, 许雄, 刘洋, 赖剑强, 黄明智, 唐涛, 宫玉彬. 开敞型角向周期加载金属柱圆波导的注波互作用线性理论研究.  , 2012, 61(16): 168401. doi: 10.7498/aps.61.168401
    [9] 胡权. 变周期大结构低压工作折叠波导行波管的理论与模拟研究.  , 2012, 61(1): 014101. doi: 10.7498/aps.61.014101
    [10] 白春江, 李建清, 胡玉禄, 杨中海, 李斌. 利用等效电路模型计算耦合腔行波管注-波互作用.  , 2012, 61(17): 178401. doi: 10.7498/aps.61.178401
    [11] 殷海荣, 徐进, 岳玲娜, 宫玉彬, 魏彦玉. 一种折叠波导行波管大信号互作用理论.  , 2012, 61(24): 244106. doi: 10.7498/aps.61.244106
    [12] 高鹏, Booske John H., 杨中海, 李斌, 徐立, 何俊, 宫玉彬, 田忠. 太赫兹折叠波导行波管再生反馈振荡器非线性理论与模拟.  , 2010, 59(12): 8484-8489. doi: 10.7498/aps.59.8484
    [13] 郝保良, 肖刘, 刘濮鲲, 李国超, 姜勇, 易红霞, 周伟. 螺旋线行波管三维频域非线性注波互作用的计算.  , 2009, 58(5): 3118-3124. doi: 10.7498/aps.58.3118
    [14] 殷海荣, 宫玉彬, 魏彦玉, 岳玲娜, 路志刚, 巩华荣, 黄民智, 王文祥. 有限开敞介质光子晶体的模式及其带结构分析.  , 2008, 57(6): 3562-3570. doi: 10.7498/aps.57.3562
    [15] 宫玉彬, 邓明金, 段兆云, 吕明毅, 魏彦玉, 王文祥. 衰减器对螺旋线慢波结构高频特性影响的理论研究.  , 2007, 56(8): 4497-4503. doi: 10.7498/aps.56.4497
    [16] 肖 刘, 苏小保, 刘濮鲲. 基于行波管螺旋导电面模型的空间电荷场研究.  , 2006, 55(10): 5150-5156. doi: 10.7498/aps.55.5150
    [17] 李建清, 莫元龙. 行波管中慢电磁行波与电子注非线性互作用普遍理论.  , 2006, 55(8): 4117-4122. doi: 10.7498/aps.55.4117
    [18] 岳玲娜, 王文祥, 魏彦玉, 宫玉彬. 同轴任意槽形周期圆波导慢波结构色散特性的研究.  , 2005, 54(9): 4223-4228. doi: 10.7498/aps.54.4223
    [19] 郝建红, 丁 武, 张治畴. 行波管放大器中场极限环和混沌行为的阈值分析.  , 2003, 52(8): 1979-1983. doi: 10.7498/aps.52.1979
    [20] 郝建红, 丁 武. 行波管放大器中辐射场的极限环振荡和混沌.  , 2003, 52(4): 906-910. doi: 10.7498/aps.52.906
计量
  • 文章访问数:  5489
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-03
  • 修回日期:  2018-01-18
  • 刊出日期:  2019-04-20

/

返回文章
返回
Baidu
map