-
A lossy ceramic-loaded waveguide is positive to promote the stability and performance of the gyrotron traveling-wave amplifier (gyro-TWT). In this paper we develop the electron cyclotron maser linear theory on the basis of the field expressions in the lossy ceramic-loaded waveguide. By systematic numerical calculation, we find that both the field patterns and the dispersion curves have one-to-one mapping relation between the modes in ceramic-loaded waveguide and that in empty cylindrical waveguide. With the Laplace transform, the linear theory could calculate the field profile and the threshold of an absolute instability oscillation. The linear theory is also used to study the influence of the magnetic, current and ceramic layer on the amplification characteristics. These results are promotive to the application of the lossy ceramic in a gyro-TWT and the development of the high stable gyro-TWT.
-
Keywords:
- lossy dielectric /
- gyrotron-traveling-wave tube /
- linear theory /
- stability
[1] Chu K R 2004 Rev. Mod. Phys.76 492
[2] Chu K R, Chen H Y, Huang C L, Chang T H, Barnett L R, Chen S H, Yang T T, Dialetis D J 1999 IEEE Trans. Plasma Sci. 27 391
[3] Garven M, Calame J P, Danly B G, Nguyen K T, Levush B, Wood F N, Pershing D E 2002 IEEE Trans. Plasma Sci. 30 885
[4] Calame J P, Garven M, Danly B G, Levush B, Nguyen K T 2002 IEEE Trans. Electron Dev. 30 1469
[5] Song H H, McDermott D B, Hirata Y, Barnett L R, Domier C W, Hsu H L, Chang T H, Tsar W C, Chu K R, Luhmann N C 2004 Phys. Plasmas 11 2935
[6] Sirigiri J R, Shapiro M A, Temkin R J 2003 Phys. Rev. Lett. 27 258302
[7] Rao S J, Jain P K, Basu B N 1996 IEEE Trans. Electron Dev. 43 2290
[8] Yan R, Luo Y, Li J Y, Pu Y L, Wang J X, Lei C J, Liu Y H 2008 Acta Phys. Sin. 57 460 (in Chinese) [鄢 然、 罗 勇、 李家胤、 蒲友雷、 王建勋、 雷朝军、 刘迎辉2008 57 460] 〖9] Du C H, Xue Q Z, Liu P K 2008 IEEE Electr. Device 29 1256
[9] Du C H, Xue Q Z, Liu P K, Wang M H 2009 IEEE Trans. Electron Dev. 56 839
[10] Du C H, Liu P K 2009 Phys. Plasmas 16 073104
[11] Chu K R, Lin A T 1988 IEEE Trans. Plasma Sci. 16 90
[12] Kou C S, Wang Q S, McDermott D B, Lin A T, Chu K R, Luhmann N C 1992 IEEE Trans. Plasma Sci. 20 155
[13] Lai G J, Liu P K 2006 Acta Phys. Sin. 55 321 (in Chinese) [来国军、 刘濮鲲 2006 55 321]
[14] Lai G J, Liu P K 2007 Acta Phys. Sin. 55 4515 (in Chinese) [来国军 刘濮鲲 2007 55 4515]
[15] Du C H, Liu P K 2009 IEEE Trans. Electron Dev. 56 2335
[16] Du C H, Liu P K, Xue Q Z, Wang M H 2008 Phys. Plasmas 15 123107
-
[1] Chu K R 2004 Rev. Mod. Phys.76 492
[2] Chu K R, Chen H Y, Huang C L, Chang T H, Barnett L R, Chen S H, Yang T T, Dialetis D J 1999 IEEE Trans. Plasma Sci. 27 391
[3] Garven M, Calame J P, Danly B G, Nguyen K T, Levush B, Wood F N, Pershing D E 2002 IEEE Trans. Plasma Sci. 30 885
[4] Calame J P, Garven M, Danly B G, Levush B, Nguyen K T 2002 IEEE Trans. Electron Dev. 30 1469
[5] Song H H, McDermott D B, Hirata Y, Barnett L R, Domier C W, Hsu H L, Chang T H, Tsar W C, Chu K R, Luhmann N C 2004 Phys. Plasmas 11 2935
[6] Sirigiri J R, Shapiro M A, Temkin R J 2003 Phys. Rev. Lett. 27 258302
[7] Rao S J, Jain P K, Basu B N 1996 IEEE Trans. Electron Dev. 43 2290
[8] Yan R, Luo Y, Li J Y, Pu Y L, Wang J X, Lei C J, Liu Y H 2008 Acta Phys. Sin. 57 460 (in Chinese) [鄢 然、 罗 勇、 李家胤、 蒲友雷、 王建勋、 雷朝军、 刘迎辉2008 57 460] 〖9] Du C H, Xue Q Z, Liu P K 2008 IEEE Electr. Device 29 1256
[9] Du C H, Xue Q Z, Liu P K, Wang M H 2009 IEEE Trans. Electron Dev. 56 839
[10] Du C H, Liu P K 2009 Phys. Plasmas 16 073104
[11] Chu K R, Lin A T 1988 IEEE Trans. Plasma Sci. 16 90
[12] Kou C S, Wang Q S, McDermott D B, Lin A T, Chu K R, Luhmann N C 1992 IEEE Trans. Plasma Sci. 20 155
[13] Lai G J, Liu P K 2006 Acta Phys. Sin. 55 321 (in Chinese) [来国军、 刘濮鲲 2006 55 321]
[14] Lai G J, Liu P K 2007 Acta Phys. Sin. 55 4515 (in Chinese) [来国军 刘濮鲲 2007 55 4515]
[15] Du C H, Liu P K 2009 IEEE Trans. Electron Dev. 56 2335
[16] Du C H, Liu P K, Xue Q Z, Wang M H 2008 Phys. Plasmas 15 123107
Catalog
Metrics
- Abstract views: 8003
- PDF Downloads: 641
- Cited By: 0