Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Oscillatory frequencies in spatiotemporal system with local inhomogeneity

Gao Ji-Hua Shi Wen-Mao Tang Yan-Feng Xiao Qi Yang Hai-Tao

Citation:

Oscillatory frequencies in spatiotemporal system with local inhomogeneity

Gao Ji-Hua, Shi Wen-Mao, Tang Yan-Feng, Xiao Qi, Yang Hai-Tao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Target waves usually emit concentric circular waves, whereas spiral waves rotate around a central core (topological defect) region, the two forms of waves are closely related due to the similarity of their spatial structures. Spiral waves can be generated spontaneously in a homogeneous system, while target waves usually cannot be self-sustained in the same system. Therefore, spiral waves can be found in diverse natural systems, and target waves can be produced from the spirals with special boundary configurations or central pacemakers. The pacemaker of target wave is an oscillatory source or medium inhomogeneity. To model the inhomogeneity in some realistic situations, we introduce local parameter shifts and simulate the transition from spiral waves to target waves. In this research, the evolution of the spiral waves in the complex Ginzburg-Landau equation is investigated by numerical simulations, and the multi-spiral patterns can be transformed into stable target waves with local inhomogeneous parameter shifts in a two-dimensional (2D) spatiotemporal system. The detailed study shows that the initial multi-spiral waves can be influenced by introducing inhomogeneity in the local area of the system space, and the oscillatory frequency of the system plays an important role in changing the pattern. A successful transition from inwardly propagating spirals to target waves can be observed when the oscillatory frequencies of non-controlled and local inhomogeneous region, which have equal values, are both less than the inherent frequency of system. When we inspect the relationship between oscillatory frequencies and the characteristics of the inhomogeneous region, an intriguing V-shaped line is found in parameter-frequency diagram, and the V-shaped area presents three features. Firstly, the left and right sides of the V-shaped area are symmetrical. Secondly, the propagating directions of target waves from the left and right sides are opposite. An inwardly propagating target wave is formed on the left side of the V-shaped area, and an outwardly propagating target wave stably exists on the right side of the line. Thirdly, as local inhomogeneous parameter 2 increases, the V-shaped area moves towards the local inhomogeneous parameter 2 and decreases simultaneously, and the width of the V-shaped area remains approximately the same. To our knowledge, this V-shaped line is a novel observation, hence the changes of the system frequencies are thought to be provoking. This work presents the numerical experiments and theoretical analyses for the stable conditions of target waves, and therefore provides the ideas in the applications of signal propagation and mode competition.
      Corresponding author: Gao Ji-Hua, jhgao@szu.edu.cn;yanght63@szu.edu.cn ; Yang Hai-Tao, jhgao@szu.edu.cn;yanght63@szu.edu.cn
    • Funds: Project supported by the Shenzhen Science and Technology Research Fund (Grant No. JCYJ 2014 0418 1819 58489).
    [1]

    Zaikin A N, Zhabotinsky A M 1970 Nature 225 535

    [2]

    Ross J, Muller S C, Vidal C 1988 Science 240 460

    [3]

    Wolff J, Papathanasiou A G, Kevrekidis I G, Rotermund H H, Ertl G 2001 Science 294 134

    [4]

    Stich M, Mikhailov A S 2006 Physica D 215 38

    [5]

    Stich M, Mikhailov A S {2002 Phys. Chem. 216 512

    [6]

    Stich M, Ipsen M, Mikhailov A S 2001 Phys. Rev. Lett. 86 4406

    [7]

    Stich M, Mikhailov A S, Kuramoto Y 2009 Phys. Rev. E 79 026110

    [8]

    Vidal C, Pagola A 1989 Phys. Chem. 93 2711

    [9]

    Hagan P S 1981 Adv. Appl. Math 2 400

    [10]

    Vanag V K, Epstein I R 2001 Science 294 835

    [11]

    Shao X, Wu Y, Zhang J, Wang H, Ouyang Q 2008 Phys. Rev. Lett. 100 198304

    [12]

    Brusch L, Nicola E M, Bar M 2004 Phys. Rev. Lett. 92 089801

    [13]

    Nicola E M, Brusch L, Bar M 2004 Phys. Chem. B 108 14733

    [14]

    Li B W, Ying H P, Yang J S, Gao X 2010 Phys. Lett. A 374 3752

    [15]

    Li B W, Gao X, Deng Z G, Ying H P, Zhang H 2010 Euro. Phys. Lett. 91 34001

    [16]

    Jiang M, Wang X, Ouyang Q, Zhang H 2004 Phys. Rev. E 69 056202

    [17]

    He X, Zhang H, Hu B, Cao Z, Zheng B, Hu G 2007 New J. Phys. 9 66

    [18]

    Li B W, Zhang H, Ying H P, Chen W Q, Hu G 2008 Phys. Rev. E 77 056207

    [19]

    Gao J H, Zhan M 2007 Phys. Lett. A 371 96

    [20]

    Luo J, Zhan M 2008 Phys. Lett. A 372 2415

    [21]

    Mikhailov A S, Showalter K {2006 Phys. Rep. 42 79

    [22]

    Goryachev A, Kapral R 1996 Phys. Rev. E 54 5469

    [23]

    Aranson I S, Kramer L 2002 Rev. Mod. Phys. 74 99

    [24]

    Gao J H, Xie W M, Gao J Z, Yang H P, Ge Z C 2012 Acta Phys. Sin. 61 130506 (in Chinese) [高继华, 谢伟苗, 高加振, 杨海朋, 戈早川 2012 61 130506]

    [25]

    Kuramoto Y 1984 Chemical Oscillations, Waves, and Turbulence (New York: Springer)

    [26]

    Cross M, Hohenberg P 1993 Rev. Mod. Phys. 65 851

    [27]

    Xie L L, Gao J Z, Xie W M, Gao J H 2011 Chin. Phys. B 20 110503

    [28]

    Gao J H, Wang Y, Zhang C, Yang H P, Ge Z C {2014 Acta Phys. Sin. 63 020503 (in Chinese) [高继华, 王宇, 张超, 杨海朋, 戈早川 2014 63 020503]

  • [1]

    Zaikin A N, Zhabotinsky A M 1970 Nature 225 535

    [2]

    Ross J, Muller S C, Vidal C 1988 Science 240 460

    [3]

    Wolff J, Papathanasiou A G, Kevrekidis I G, Rotermund H H, Ertl G 2001 Science 294 134

    [4]

    Stich M, Mikhailov A S 2006 Physica D 215 38

    [5]

    Stich M, Mikhailov A S {2002 Phys. Chem. 216 512

    [6]

    Stich M, Ipsen M, Mikhailov A S 2001 Phys. Rev. Lett. 86 4406

    [7]

    Stich M, Mikhailov A S, Kuramoto Y 2009 Phys. Rev. E 79 026110

    [8]

    Vidal C, Pagola A 1989 Phys. Chem. 93 2711

    [9]

    Hagan P S 1981 Adv. Appl. Math 2 400

    [10]

    Vanag V K, Epstein I R 2001 Science 294 835

    [11]

    Shao X, Wu Y, Zhang J, Wang H, Ouyang Q 2008 Phys. Rev. Lett. 100 198304

    [12]

    Brusch L, Nicola E M, Bar M 2004 Phys. Rev. Lett. 92 089801

    [13]

    Nicola E M, Brusch L, Bar M 2004 Phys. Chem. B 108 14733

    [14]

    Li B W, Ying H P, Yang J S, Gao X 2010 Phys. Lett. A 374 3752

    [15]

    Li B W, Gao X, Deng Z G, Ying H P, Zhang H 2010 Euro. Phys. Lett. 91 34001

    [16]

    Jiang M, Wang X, Ouyang Q, Zhang H 2004 Phys. Rev. E 69 056202

    [17]

    He X, Zhang H, Hu B, Cao Z, Zheng B, Hu G 2007 New J. Phys. 9 66

    [18]

    Li B W, Zhang H, Ying H P, Chen W Q, Hu G 2008 Phys. Rev. E 77 056207

    [19]

    Gao J H, Zhan M 2007 Phys. Lett. A 371 96

    [20]

    Luo J, Zhan M 2008 Phys. Lett. A 372 2415

    [21]

    Mikhailov A S, Showalter K {2006 Phys. Rep. 42 79

    [22]

    Goryachev A, Kapral R 1996 Phys. Rev. E 54 5469

    [23]

    Aranson I S, Kramer L 2002 Rev. Mod. Phys. 74 99

    [24]

    Gao J H, Xie W M, Gao J Z, Yang H P, Ge Z C 2012 Acta Phys. Sin. 61 130506 (in Chinese) [高继华, 谢伟苗, 高加振, 杨海朋, 戈早川 2012 61 130506]

    [25]

    Kuramoto Y 1984 Chemical Oscillations, Waves, and Turbulence (New York: Springer)

    [26]

    Cross M, Hohenberg P 1993 Rev. Mod. Phys. 65 851

    [27]

    Xie L L, Gao J Z, Xie W M, Gao J H 2011 Chin. Phys. B 20 110503

    [28]

    Gao J H, Wang Y, Zhang C, Yang H P, Ge Z C {2014 Acta Phys. Sin. 63 020503 (in Chinese) [高继华, 王宇, 张超, 杨海朋, 戈早川 2014 63 020503]

  • [1] Pan Jun-Ting, He Yin-Jie, Xia Yuan-Xun, Zhang Hong. Control of spiral waves in excitable media under polarized electric fields. Acta Physica Sinica, 2020, 69(8): 080503. doi: 10.7498/aps.69.20191934
    [2] Xu Ying, Wang Chun-Ni, Jin Wu-Yin, Ma Jun. Investigation of emergence of target wave and spiral wave in neuronal network induced by gradient coupling. Acta Physica Sinica, 2015, 64(19): 198701. doi: 10.7498/aps.64.198701
    [3] Li Wei-Heng, Li Wei-Xin, Pan Fei, Tang Guo-Ning. Transformation of spiral wave to plan wave in the two layers of coupled excitable media. Acta Physica Sinica, 2014, 63(20): 208201. doi: 10.7498/aps.63.208201
    [4] Cheng Yu-Guo, Cheng Mou-Sen, Wang Mo-Ge, Li Xiao-Kang. Numerical study on the effects of magnetic field on helicon plasma waves and energy absorption. Acta Physica Sinica, 2014, 63(3): 035203. doi: 10.7498/aps.63.035203
    [5] Gao Ji-Hua, Wang Yu, Zhang Chao, Yang Hai-Peng, Ge Zao-Chuan. Stability for amplitude spiral wave in complex Ginzburg-Landau equation. Acta Physica Sinica, 2014, 63(2): 020503. doi: 10.7498/aps.63.020503
    [6] Chen Xing-Ji, Qiao Cheng-Gong, Wang Li-Li, Zhou Zhen-Wei, Tian Tao-Tao, Tang Guo-Ning. Evolution of spiral waves in indirectly coupled excitable medium with time-delayed coupling. Acta Physica Sinica, 2013, 62(12): 128201. doi: 10.7498/aps.62.128201
    [7] Zhao Long, Yang Ji-Ping, Zheng Yan-Hong. Modulation of nonlinear coupling on the synchronization induced by linear coupling. Acta Physica Sinica, 2013, 62(2): 028701. doi: 10.7498/aps.62.028701
    [8] Hu Bo-Lin, Ma Jun, Li Fan, Pu Zhong-Sheng. Mechanism of target wave excited by current with diversity. Acta Physica Sinica, 2013, 62(5): 058701. doi: 10.7498/aps.62.058701
    [9] Chen Xing-Ji, Tian Tao-Tao, Zhou Zhen-Wei, Hu Yi-Bo, Tang Guo-Ning. Synchronization of two spiral waves interacting through a passive medium. Acta Physica Sinica, 2012, 61(21): 210509. doi: 10.7498/aps.61.210509
    [10] Zhou Zhen-Wei, Chen Xing-Ji, Tian Tao-Tao, Tang Guo-Ning. Study on the control of spiral waves in coupled excitable media. Acta Physica Sinica, 2012, 61(21): 210506. doi: 10.7498/aps.61.210506
    [11] Kuang Yu-Lan, Tang Guo-Ning. Eliminate spiral wave and spatiotemporal chaos by using short-term cardiac memory. Acta Physica Sinica, 2012, 61(19): 190501. doi: 10.7498/aps.61.190501
    [12] Dong Li-Fang, Bai Zhan-Guo, He Ya-Feng. Sparse and dense spiral waves in heterogeneous excitable media. Acta Physica Sinica, 2012, 61(12): 120509. doi: 10.7498/aps.61.120509
    [13] Kuang Yu-Lan, Tang Guo-Ning. Suppressions of spiral waves and spatiotemporal chaos in cardiac tissue. Acta Physica Sinica, 2012, 61(10): 100504. doi: 10.7498/aps.61.100504
    [14] Gao Ji-Hua, Xie Wei-Miao, Gao Jia-Zhen, Yang Hai-Peng, Ge Zao-Chuan. Amplitude spiral wave in coupled complex Ginzburg-Landau equation. Acta Physica Sinica, 2012, 61(13): 130506. doi: 10.7498/aps.61.130506
    [15] Wei Hai-Ming, Tang Guo-Ning. Numerical simulation study on effects of alternansbehavior on spiral waves. Acta Physica Sinica, 2011, 60(4): 040504. doi: 10.7498/aps.60.040504
    [16] Tang Dong-Ni, Zhang Xu, Ren Wei, Tang Guo-Ning. A ring-like heterogeneous medium-induced self-sustained target waves in excitable media. Acta Physica Sinica, 2010, 59(8): 5313-5318. doi: 10.7498/aps.59.5313
    [17] Lü Yao-Ping, Gu Guo-Feng, Lu Hua-Chun, Dai Yu, Tang Guo-Ning. Refraction of reaction-diffusion plane wave for different diffusion coefficients. Acta Physica Sinica, 2009, 58(5): 2996-3000. doi: 10.7498/aps.58.2996
    [18] Gan Zheng-Ning, Ma Jun, Zhang Guo-Yong, Chen Yong. Instability of spiral wave in small-world networks. Acta Physica Sinica, 2008, 57(9): 5400-5406. doi: 10.7498/aps.57.5400
    [19] Deng Min-Yi, Shi Juan, Li Hua-Bing, Kong Ling-Jiang, Liu Mu-Ren. Lattice Boltzmann method for the production and evolution of spiral waves. Acta Physica Sinica, 2007, 56(4): 2012-2017. doi: 10.7498/aps.56.2012
    [20] Ma Jun, Jin Wu-Yin, Li Yan-Long, Chen Yong. Suppression of meandering spiral waves in the excitable media due to a perturbation with stochastic phase. Acta Physica Sinica, 2007, 56(4): 2456-2465. doi: 10.7498/aps.56.2456
Metrics
  • Abstract views:  5319
  • PDF Downloads:  236
  • Cited By: 0
Publishing process
  • Received Date:  04 March 2016
  • Accepted Date:  23 May 2016
  • Published Online:  05 August 2016

/

返回文章
返回
Baidu
map