-
研究了复Ginzburg-Landau方程系统中模螺旋波与其他斑图在同一平面内的竞争行为,发现演化结果在系统参数平面内可分为四个主要区域:在I区和Ⅲ区中,模螺旋波与相螺旋波相比稳定性较差,模螺旋波的空间被相螺旋波所入侵. 在Ⅱ区中,模螺旋波具有较强的稳定性,相螺旋波的空间被模螺旋波所入侵. 在IV区内,由于时空混沌所导致的频率不稳定性,演化的结果较为复杂. 我们通过对模螺旋波、相螺旋波以及时空混沌的频率分析,发现当模螺旋波的系统参数为α1=-1.34,β1=0.35时,较高频率的模螺旋波具有较好的稳定性,高频模螺旋波可以入侵低频斑图空间. 竞争结果主要受系统变量实部的频率影响,频率分析所得到的理论结果与数值实验结果符合得非常好.
-
关键词:
- 螺旋波 /
- 复Ginzburg-Landau 方程 /
- 模螺旋波
The study of a novel amplitude spiral wave in complex Ginzburg-Landau equation system is performed. The competition results between amplitude spiral waves and phase spiral waves and spatiotemporal chaos can be divided into four kind of regimes: regimes I and Ⅲ, in which the space of amplitude spiral waves is invaded by phase spiral waves, regime Ⅱ, in which the amplitude spiral waves are stronger than phase spiral waves, and regime IV, in which we have various results due to the existence of spatiotemporal chaos. Analysing the frequencies of amplitude spirals, phase spirals and spatiotemporal chaos, we find that when the parameters of spiral wave system α1=-1.34 and β1=0.35, the spiral wave with higher frequency will have better stability and can invade into low-frequency pattern space. The competition results are influenced by frequency of real part of the system variable. Our frequency analyses accord well with the numerical observations.-
Keywords:
- spiral wave /
- complex Ginzburg-Landau equation /
- amplitude spiral wave
[1] Zaikin A N, Zhabotinsky A M 1970 Nature 225 535
[2] Masajada J, Dubik B 2001 Opt. Commun. 198 21
[3] Yu L C, Ma J, Zhang G Y, Chen Y 2008 Chin. Phys. Lett. 25 2706
[4] Lee K J, Cox E C, Goldstein R E 1996 Phys. Rev. Lett. 76 1174
[5] Tian C H, Deng M Y 2013 Acta Phys. Sin. 62 190503 (in Chinese) [田昌海, 邓敏艺 2013 62 190503]
[6] Yuan G Y, Zhang H, Wang G R 2013 Acta Phys. Sin. 62 160502 (in Chinese) [袁国勇, 张焕, 王光瑞 2013 62 160502]
[7] Zhou Z W, Cheng X J, Tian H T, Tang G N 2012 Acta Phys. Sin. 61 210506 (in Chinese) [周振玮, 陈醒基, 田海涛, 唐国宁 2012 61 210506]
[8] Dong L F, Bai Z G, He Y F 2012 Acta Phys. Sin. 61 120509 (in Chinese) [董丽芳, 白占国, 贺亚峰 2012 61 120509]
[9] Yuan X P, Chen J X, Zhao Y H, Lou Q, Wang L L, Shen Q 2011 Chin. Phys. Lett. 28 100505
[10] Qian Y 2012 Chin. Phys. B 21 088201
[11] Ouyang Q 2000 Pattern Formation in Reaction-Diffusion Systems (Shanghai: Shanghai Scientific and Technological Education Publishing House) (in Chinese) [欧阳颀 2000 反应扩散系统中的斑图动力 学(上海:上海科技教育出版社)]
[12] Zhan M, Kapral R 2005 Phys. Rev. E 72 046221
[13] Gan Z N, Ma J, Zhang G Y, Chen Y 2008 Acta Phys. Sin. 57 5400 (in Chinese) [甘正宁, 马军, 张国勇, 陈勇 2008 57 5400]
[14] Xie L L, Gao J H 2010 Chin. Phys. B 19 060516
[15] Gao J Z, Xie L L, Xie W M, Gao J H 2011 Acta Phys. Sin. 60 080503 (in Chinese) [高加振, 谢玲玲, 谢伟苗, 高继华 2011 60 080503]
[16] Zhong M, Tang G N 2010 Acta Phys. Sin. 59 1593 (in Chinese) [钟敏, 唐国宁 2010 59 1593]
[17] Gao J H, Xie L L, Nie H C, Zhan M 2010 Chaos 20 043132
[18] Xie L L, Gao J Z, Xie W M, Gao J H 2011 Chin. Phys. B 20 110503
[19] Gao J H, Xie W M, Gao J Z, Yang H P, Ge Z C 2012 Acta Phys. Sin. 61 130506 (in Chinese) [高继华, 谢伟苗, 高加振, 杨海朋, 戈早川 2012 61 130506]
[20] He X Y, Zhang H, Hu B, Cao Z J, Zheng B, Hu G 2007 New J. Phys. 9 66
[21] Zhabotinsky A M, Muller S C, Hess B 1990 Chem. Phys. Lett. 172 445
[22] Winston D, Arora M, Maselko J, Gaspar V, Showalter K 1991 Nature 351 132
[23] Hildebrand M, Cui J X, Mihaliuk E, Wang J C, Showalter K 2003 Phys. Rev. E 68 026205
[24] Yang L F, Epstein I R 2003 Phys. Rev. Lett. 90 178303
[25] Yang H J, Yang J Z 2007 Phys. Rev. E 76 016206
[26] Kuramoto Y 1984 Chemical Oscillations, Waves, and Turbulence (New York: Springer)
[27] Cross M, Hohenberg P 1993 Rev. Mod. Phys. 65 851
[28] Aranson I S, Kramer L 2002 Rev. Mod. Phys. 74 99
[29] Das S K, Puri S, Cross M 2001 Phys. Rev. E 64 046206
[30] Ipsen M, van Hecke M 2001 Physica D 160 103
[31] van Hecke M 2003 Physica D 174 134
[32] Nie H C, Xie L L, Gao J H, Zhan M 2011 Chaos 21 023107
[33] Nie H C, Gao J H, Zhan M 2011 Phys. Rev. E 84 056204
[34] Zhan M, Wang X G, Gong X F, Lai C H 2005 Phys. Rev. E 71 036212
[35] Cui X H, Huang X Q, Xie F G, Hu G 2013 Phys. Rev. E 88 022905
-
[1] Zaikin A N, Zhabotinsky A M 1970 Nature 225 535
[2] Masajada J, Dubik B 2001 Opt. Commun. 198 21
[3] Yu L C, Ma J, Zhang G Y, Chen Y 2008 Chin. Phys. Lett. 25 2706
[4] Lee K J, Cox E C, Goldstein R E 1996 Phys. Rev. Lett. 76 1174
[5] Tian C H, Deng M Y 2013 Acta Phys. Sin. 62 190503 (in Chinese) [田昌海, 邓敏艺 2013 62 190503]
[6] Yuan G Y, Zhang H, Wang G R 2013 Acta Phys. Sin. 62 160502 (in Chinese) [袁国勇, 张焕, 王光瑞 2013 62 160502]
[7] Zhou Z W, Cheng X J, Tian H T, Tang G N 2012 Acta Phys. Sin. 61 210506 (in Chinese) [周振玮, 陈醒基, 田海涛, 唐国宁 2012 61 210506]
[8] Dong L F, Bai Z G, He Y F 2012 Acta Phys. Sin. 61 120509 (in Chinese) [董丽芳, 白占国, 贺亚峰 2012 61 120509]
[9] Yuan X P, Chen J X, Zhao Y H, Lou Q, Wang L L, Shen Q 2011 Chin. Phys. Lett. 28 100505
[10] Qian Y 2012 Chin. Phys. B 21 088201
[11] Ouyang Q 2000 Pattern Formation in Reaction-Diffusion Systems (Shanghai: Shanghai Scientific and Technological Education Publishing House) (in Chinese) [欧阳颀 2000 反应扩散系统中的斑图动力 学(上海:上海科技教育出版社)]
[12] Zhan M, Kapral R 2005 Phys. Rev. E 72 046221
[13] Gan Z N, Ma J, Zhang G Y, Chen Y 2008 Acta Phys. Sin. 57 5400 (in Chinese) [甘正宁, 马军, 张国勇, 陈勇 2008 57 5400]
[14] Xie L L, Gao J H 2010 Chin. Phys. B 19 060516
[15] Gao J Z, Xie L L, Xie W M, Gao J H 2011 Acta Phys. Sin. 60 080503 (in Chinese) [高加振, 谢玲玲, 谢伟苗, 高继华 2011 60 080503]
[16] Zhong M, Tang G N 2010 Acta Phys. Sin. 59 1593 (in Chinese) [钟敏, 唐国宁 2010 59 1593]
[17] Gao J H, Xie L L, Nie H C, Zhan M 2010 Chaos 20 043132
[18] Xie L L, Gao J Z, Xie W M, Gao J H 2011 Chin. Phys. B 20 110503
[19] Gao J H, Xie W M, Gao J Z, Yang H P, Ge Z C 2012 Acta Phys. Sin. 61 130506 (in Chinese) [高继华, 谢伟苗, 高加振, 杨海朋, 戈早川 2012 61 130506]
[20] He X Y, Zhang H, Hu B, Cao Z J, Zheng B, Hu G 2007 New J. Phys. 9 66
[21] Zhabotinsky A M, Muller S C, Hess B 1990 Chem. Phys. Lett. 172 445
[22] Winston D, Arora M, Maselko J, Gaspar V, Showalter K 1991 Nature 351 132
[23] Hildebrand M, Cui J X, Mihaliuk E, Wang J C, Showalter K 2003 Phys. Rev. E 68 026205
[24] Yang L F, Epstein I R 2003 Phys. Rev. Lett. 90 178303
[25] Yang H J, Yang J Z 2007 Phys. Rev. E 76 016206
[26] Kuramoto Y 1984 Chemical Oscillations, Waves, and Turbulence (New York: Springer)
[27] Cross M, Hohenberg P 1993 Rev. Mod. Phys. 65 851
[28] Aranson I S, Kramer L 2002 Rev. Mod. Phys. 74 99
[29] Das S K, Puri S, Cross M 2001 Phys. Rev. E 64 046206
[30] Ipsen M, van Hecke M 2001 Physica D 160 103
[31] van Hecke M 2003 Physica D 174 134
[32] Nie H C, Xie L L, Gao J H, Zhan M 2011 Chaos 21 023107
[33] Nie H C, Gao J H, Zhan M 2011 Phys. Rev. E 84 056204
[34] Zhan M, Wang X G, Gong X F, Lai C H 2005 Phys. Rev. E 71 036212
[35] Cui X H, Huang X Q, Xie F G, Hu G 2013 Phys. Rev. E 88 022905
计量
- 文章访问数: 6248
- PDF下载量: 566
- 被引次数: 0