-
在超高真空系统中对基于丝网印刷方法制备的碳纳米管薄膜的场蒸发效应进行实验研究. 实验发现, 碳纳米管薄膜样品存在场蒸发现象, 蒸发阈值场在10.0-12.6 V/nm之间, 蒸发离子流可以达到百皮安量级; 扫描电子显微镜分析和场致电子发射测量结果表明, 场蒸发会使碳纳米管分布变得更加不均匀, 会导致薄膜的场致电子发射开启电压上升(240300V)、场增强因子下降(83004200)、蒸发阈值场上升(1012.6V/nm), 同时使得薄膜场致电子发射的可重复性明显变好. 场蒸发也是薄膜自身电场一致性修复的表现, 这种修复并非表现在形貌上, 而是不同区域场增强因子之间的差距会越来越小, 这样薄膜场致电子发射的可重复性和稳定性自然会得到改善.In recent years, the carbon nanotube (CNT) emitters used for ion sources or gas sensors have been investigated, and the progress of several approaches such as field ionization and field desorption sources has been reported. However, a major concern for these applications is possible loss of CNTs caused by field evaporation, which can shorten the lifetimes of CNT-based emitters used for high electric field ion sources. So in CNT-based field emitter technology, emitter lifetime and degradation will be key parameters to be controlled. However, up to now only very few investigations in this direction have been conducted. The reason for this might lie in the fact that one often considers that the threshold value of field evaporation for a kind of material ( 40 V/nm) is much higher than the field of ionization or desorption ( 10 V/nm) according to the metal material characteristics (such as the threshold values of field evaporation for tungsten and molybdenum are 54 V/nm and 45 V/nm, respectively). In this work, the carbon nanotube thin-film (the density of CNTs is about 2.5108/cm2) is fabricated by screen-printing method, and the field evaporation behavior of CNT thin-film is studied experimentally in an ultrahigh vacuum system typically operating at a pressure of lower than 10-9 Torr after a 4-hour bake-out at ~200℃. Unlike the vertically aligned CNT array having higher electric field around the edge of the array because of the shielding effect, the printed CNT thin-film has more uniform distribution of electric field and is very easy to relize the mass production. The results show that the prepared CNT thin-film has quite obvious field evaporation behavior (some contaminants have deposited on the surface of grid after field evaporation, and energy-dispersive X-ray spectroscopy elemental mapping result of the grid indicates that the contaminants consist mainly of carbon elements), with turn-on field in a range of 10.0-12.6 V/nm, ion current could reach up to hundreds of pA. Meanwhile, the results with scanning electron microscope analysis and field electron emission measurement indicate that the CNT distribution turns into more non-uniform distribution after field evaporation; even some CNTs are directly dragged away from the substrate by the strong field. The field evaporation of CNT thin-film also leads to field electron emission onset voltage increasing from 240 V to 300 V, field enhancement factor decreasing from 8300 to 4200, and threshold field of field evaporation rising from 10.0 V/nm to 12.6 V/nm. However, the repeatability of sample treated by the field evaporation brings about an improvement to a certain extent. It could be understood in this way: upon applying a positive voltage, the most protruding parts, which have the strongest emissive capability, are evaporated first, which leads to the declined field enhancement factor; the parts of CNTs which have relatively weak emissive capability are not evaporated. So the uniformity of electric field is improved through reducing the difference in field enhancement factor rather than surface morphology between carbon nanotubes. The field evaporation of CNT thin-film is also a process which improves the uniformity of electric field. Therefore, the stability and repeatability of the field electron emission for carbon nanotube thin-film are improved naturally.
[1] Iijima S 1991 Nature 354 56
[2] Henning T, Salama F 1998 Science 282 2204
[3] Hiura H, Ebbesen T W, Fujita J, Tanigaki K, Takada T 1994 Nature 367 148
[4] Treacy M M J, Ebbesen T W, Gibson J M 1996 Nature 381 678
[5] Ebbesen T W, Lezec H J, Hiura H, Bennett J W, Ghaemi H F, Thio T 1996 Nature 382 54
[6] Misewich J A, Martel R, Avouris Ph, Tsang J C, Heinze S, Tersoff J 2003 Science 300 783
[7] Li P, Jiang K L, Liu M, Li Q Q, Fan S S, Sun J L 2003 Appl. Phys. Lett. 82 1763
[8] Fujii M, Zhang X, Xie H, Ago H, Takahashi K, Ikuta T, Abe H, Shimizu T 2005 Phys. Rev. Lett. 95 065502
[9] Xin F 2012 Modification and Composite Material of Carbon Nanotubes (Beijing: Chemical Industry Press) pp26-54 (in Chinese) [辛菲 2012 碳纳米管改性及其复合材料 (北京:化学工业出版社) 第26-54页]
[10] Dragoman M, Grenier K, Dubuc D, Bary L, Plana R, Fourn E, Flahaut E 2007 J. Appl. Phys. 101 106103
[11] Ding D, Chen Z, Rajaputra S, Singh V 2007 Sensor. Actuat. B: Chem. 124 12
[12] Li Y, Wang H C, Cao X H, Yuan M Y, Yang M J 2008 Nanotechnology 19 015503
[13] Fink R L, Jiang N, Thuesen L, Leung K N, Antolak A J 2009 AIP Conf. Proc. 1099 610
[14] Persaud A, Allen I, Dickinson M R, Schenkel T, Kapadia R, Takei K, Javey A 2011 J. Vac. Sci. Technol. B 29 02B107
[15] Persaud A, Waldmann O, Kapadia R, Takei K, Javey A, Schenkel T 2012 Rev. Sci. Instrum. 83 02B312
[16] O'Donnell K M, Fahy A, Barr M, Allison W, Dastoor P C 2012 Phys. Rev. B 85 113404
[17] Colbert D T, Zhang J, McClure S M, Nikolaev P, Chen Z, Hafner J H, Owens D W, Kotula P G, Carter C B, Weaver J H, Rinzler A G, Smalley R E 1994 Science 266 1218
[18] de Heer W A, Poncharal P, Berger C, Gezo J, Song Z, Bettini J, Ugarte D 2005 Science 307 907
[19] Chen J, Wu F 2004 Appl. Phys. A 78 989
[20] Yao X, Wu C Z, Wang H, Cheng H M, Lu G Q 2005 J. Mater. Sci. Technol. 21 57
[21] Guo Z P, Ng S H, Wang J Z, Huang Z G, Liu H K, Too C O, Wallace G G 2006 J. Nanosci. Nanotechnol. 6 713
[22] Kurachi H, Uemura S, Yotani J, Nagasako T, Yamada H, Ezaki T, Maesoba T, Nakao T, Ito M, Sakurai A, Saito Y, Shinohara H 2005 J. Soc. Inf. Display 13 727
[23] Wang Q H, Setlur A A, Lauerhaas J M, Dai J Y, Seelig E W, Chang R P H 1998 Appl. Phys. Lett. 72 2912
[24] Kwo J L, Yokoyama M, Wang W C, Chuang F Y, Lin I N 2000 Diam. Relat. Mater. 9 1270
[25] Milne W I, Teo K B K, Minoux E, Groening O, Gangloff L, Hudanski L, Schnell J P, Dieumegard D, Peauger F, Bu I Y Y, Bell M S, Legagneux P, Hasko G, Amaratunga G A J 2006 J. Vac. Sci. Technol. B 24 345
[26] Nygard J, Cobden D H, Lindelof P E 2000 Nature 408 342
[27] Javey A, Guo J, Wang Q, Lundstrom M, Dai H 2003 Nature 424 654
[28] Tans S J, Devoret M H, Dai H, Thess A, Smalley R E, Geerligs L J, Dekker C 1997 Nature 386 474
[29] Tans S J, Verschueren A R M, Dekker C 1998 Nature 393 49
[30] Yamanouchi M, Chiba D, Matsukura F, Ohno H 2004 Nature 428 539
[31] Reichenbach B 2009Ph. D. Dissertation (Albuquerque: University of New Mexico)
[32] Jiang J P, Weng J H, Yang P T 1980 Cathode Electronics and Principle of Gas Discharge (Beijing: National Defend Industry Press) pp163-166 (in Chinese) [江剑平, 翁甲辉, 杨泮棠 1980 阴极电子学与气体放电原理(北京:国防工业出版社)第163-166页]
[33] Wu Y, Ji Q, Kwan J, Leung K N 2008 Joint International Workshop: Nuclear Technology and Society-Needs for Next Generation Berkeley, California, January 6-8, pp1-6
[34] Johnson B B, Schwoebel P R, Holland C E, Resnick P J, Hertz K L, Chichester D L 2012 Nucl. Instrum. Meth. A 663 64
[35] Johnson B B, Schwoebel P R, Resnick P J, Holland C E, Hertz K L, Chichester D L 2013 J. Appl. Phys. 114 174906
[36] Waldmann O, Persaud A, Kapadia R, Takei T, Allen F I, Javey A, Schenkel T 2013 Thin Solid Films 534 488
[37] Rinzler A G, Hafner J H, Nikolaev P, Lou L, Kim S G, Tomanek D, Nordlander P, Colbert D T, Smalley R E 1995 Science 269 1550
[38] Hata K, Ariff M, Tohji K, Saito Y 1999 Chem. Phys. Lett. 308 343
[39] Hata K, Kiya Y, Ohata M, Saito Y 2001 Scripta Mater. 44 1571
[40] Ohmae N, Matsumoto N, Ohata T, Kinoshita H 2007 Diam. Relat. Mater. 16 1179
[41] Wang M S, Chen Q, Peng L M 2008 Adv. Mater. 20 724
[42] Kellogg G L 1983 Phys. Rev. B 28 1957
[43] Hertz K L, Johnson B B, Holland C E, Resnick P J, Schwoebel P R, Chichester D L 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Anaheim, CA, October 27-November 3, pp1434-1439
[44] Li X H, Yang Z H, Chen Z G, Wang H Q, Li T B, Shen N Y, Li J 1999 New Carbon Materials 14 32 (in Chinese) [李新海, 杨占红, 陈志国, 王红强, 李添宝, 沈宁一, 李晶 1999 新型炭材料 14 32]
[45] Resnick P J, Holland C E, Schwoebel P R, Hertz K L, Chichester D L 2010 Microelectron. Eng. 87 1263
[46] Dean K A, Burgin T P, Chalamala B R 2001 Appl. Phys. Lett. 79 1873
[47] Bonard J M, Klinke C, Dean K A, Coll B F 2003 Phys. Rev. B 67 115406
[48] Fowler R H, Nordheim L 1928 Proc. R. Soc. Lond. A 119 173
[49] Spindt C A, Brodie I, Humphrey L, Westerberg E R 1976 J. Appl. Phys. 47 5248
[50] Forbes R G 1999 J. Vac. Sci. Technol. B 17 526
[51] Liu P, Sun Q, Zhu F, Liu K, Jiang K, Liu L, Li Q, Fan S 2008 Nano Lett. 8 647
-
[1] Iijima S 1991 Nature 354 56
[2] Henning T, Salama F 1998 Science 282 2204
[3] Hiura H, Ebbesen T W, Fujita J, Tanigaki K, Takada T 1994 Nature 367 148
[4] Treacy M M J, Ebbesen T W, Gibson J M 1996 Nature 381 678
[5] Ebbesen T W, Lezec H J, Hiura H, Bennett J W, Ghaemi H F, Thio T 1996 Nature 382 54
[6] Misewich J A, Martel R, Avouris Ph, Tsang J C, Heinze S, Tersoff J 2003 Science 300 783
[7] Li P, Jiang K L, Liu M, Li Q Q, Fan S S, Sun J L 2003 Appl. Phys. Lett. 82 1763
[8] Fujii M, Zhang X, Xie H, Ago H, Takahashi K, Ikuta T, Abe H, Shimizu T 2005 Phys. Rev. Lett. 95 065502
[9] Xin F 2012 Modification and Composite Material of Carbon Nanotubes (Beijing: Chemical Industry Press) pp26-54 (in Chinese) [辛菲 2012 碳纳米管改性及其复合材料 (北京:化学工业出版社) 第26-54页]
[10] Dragoman M, Grenier K, Dubuc D, Bary L, Plana R, Fourn E, Flahaut E 2007 J. Appl. Phys. 101 106103
[11] Ding D, Chen Z, Rajaputra S, Singh V 2007 Sensor. Actuat. B: Chem. 124 12
[12] Li Y, Wang H C, Cao X H, Yuan M Y, Yang M J 2008 Nanotechnology 19 015503
[13] Fink R L, Jiang N, Thuesen L, Leung K N, Antolak A J 2009 AIP Conf. Proc. 1099 610
[14] Persaud A, Allen I, Dickinson M R, Schenkel T, Kapadia R, Takei K, Javey A 2011 J. Vac. Sci. Technol. B 29 02B107
[15] Persaud A, Waldmann O, Kapadia R, Takei K, Javey A, Schenkel T 2012 Rev. Sci. Instrum. 83 02B312
[16] O'Donnell K M, Fahy A, Barr M, Allison W, Dastoor P C 2012 Phys. Rev. B 85 113404
[17] Colbert D T, Zhang J, McClure S M, Nikolaev P, Chen Z, Hafner J H, Owens D W, Kotula P G, Carter C B, Weaver J H, Rinzler A G, Smalley R E 1994 Science 266 1218
[18] de Heer W A, Poncharal P, Berger C, Gezo J, Song Z, Bettini J, Ugarte D 2005 Science 307 907
[19] Chen J, Wu F 2004 Appl. Phys. A 78 989
[20] Yao X, Wu C Z, Wang H, Cheng H M, Lu G Q 2005 J. Mater. Sci. Technol. 21 57
[21] Guo Z P, Ng S H, Wang J Z, Huang Z G, Liu H K, Too C O, Wallace G G 2006 J. Nanosci. Nanotechnol. 6 713
[22] Kurachi H, Uemura S, Yotani J, Nagasako T, Yamada H, Ezaki T, Maesoba T, Nakao T, Ito M, Sakurai A, Saito Y, Shinohara H 2005 J. Soc. Inf. Display 13 727
[23] Wang Q H, Setlur A A, Lauerhaas J M, Dai J Y, Seelig E W, Chang R P H 1998 Appl. Phys. Lett. 72 2912
[24] Kwo J L, Yokoyama M, Wang W C, Chuang F Y, Lin I N 2000 Diam. Relat. Mater. 9 1270
[25] Milne W I, Teo K B K, Minoux E, Groening O, Gangloff L, Hudanski L, Schnell J P, Dieumegard D, Peauger F, Bu I Y Y, Bell M S, Legagneux P, Hasko G, Amaratunga G A J 2006 J. Vac. Sci. Technol. B 24 345
[26] Nygard J, Cobden D H, Lindelof P E 2000 Nature 408 342
[27] Javey A, Guo J, Wang Q, Lundstrom M, Dai H 2003 Nature 424 654
[28] Tans S J, Devoret M H, Dai H, Thess A, Smalley R E, Geerligs L J, Dekker C 1997 Nature 386 474
[29] Tans S J, Verschueren A R M, Dekker C 1998 Nature 393 49
[30] Yamanouchi M, Chiba D, Matsukura F, Ohno H 2004 Nature 428 539
[31] Reichenbach B 2009Ph. D. Dissertation (Albuquerque: University of New Mexico)
[32] Jiang J P, Weng J H, Yang P T 1980 Cathode Electronics and Principle of Gas Discharge (Beijing: National Defend Industry Press) pp163-166 (in Chinese) [江剑平, 翁甲辉, 杨泮棠 1980 阴极电子学与气体放电原理(北京:国防工业出版社)第163-166页]
[33] Wu Y, Ji Q, Kwan J, Leung K N 2008 Joint International Workshop: Nuclear Technology and Society-Needs for Next Generation Berkeley, California, January 6-8, pp1-6
[34] Johnson B B, Schwoebel P R, Holland C E, Resnick P J, Hertz K L, Chichester D L 2012 Nucl. Instrum. Meth. A 663 64
[35] Johnson B B, Schwoebel P R, Resnick P J, Holland C E, Hertz K L, Chichester D L 2013 J. Appl. Phys. 114 174906
[36] Waldmann O, Persaud A, Kapadia R, Takei T, Allen F I, Javey A, Schenkel T 2013 Thin Solid Films 534 488
[37] Rinzler A G, Hafner J H, Nikolaev P, Lou L, Kim S G, Tomanek D, Nordlander P, Colbert D T, Smalley R E 1995 Science 269 1550
[38] Hata K, Ariff M, Tohji K, Saito Y 1999 Chem. Phys. Lett. 308 343
[39] Hata K, Kiya Y, Ohata M, Saito Y 2001 Scripta Mater. 44 1571
[40] Ohmae N, Matsumoto N, Ohata T, Kinoshita H 2007 Diam. Relat. Mater. 16 1179
[41] Wang M S, Chen Q, Peng L M 2008 Adv. Mater. 20 724
[42] Kellogg G L 1983 Phys. Rev. B 28 1957
[43] Hertz K L, Johnson B B, Holland C E, Resnick P J, Schwoebel P R, Chichester D L 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Anaheim, CA, October 27-November 3, pp1434-1439
[44] Li X H, Yang Z H, Chen Z G, Wang H Q, Li T B, Shen N Y, Li J 1999 New Carbon Materials 14 32 (in Chinese) [李新海, 杨占红, 陈志国, 王红强, 李添宝, 沈宁一, 李晶 1999 新型炭材料 14 32]
[45] Resnick P J, Holland C E, Schwoebel P R, Hertz K L, Chichester D L 2010 Microelectron. Eng. 87 1263
[46] Dean K A, Burgin T P, Chalamala B R 2001 Appl. Phys. Lett. 79 1873
[47] Bonard J M, Klinke C, Dean K A, Coll B F 2003 Phys. Rev. B 67 115406
[48] Fowler R H, Nordheim L 1928 Proc. R. Soc. Lond. A 119 173
[49] Spindt C A, Brodie I, Humphrey L, Westerberg E R 1976 J. Appl. Phys. 47 5248
[50] Forbes R G 1999 J. Vac. Sci. Technol. B 17 526
[51] Liu P, Sun Q, Zhu F, Liu K, Jiang K, Liu L, Li Q, Fan S 2008 Nano Lett. 8 647
计量
- 文章访问数: 6997
- PDF下载量: 168
- 被引次数: 0