Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation of cherenkov radiation oscillation in a plasma-filled metallic photonic crystal

Fu Tao Ouyang Zheng-Biao

Citation:

Simulation of cherenkov radiation oscillation in a plasma-filled metallic photonic crystal

Fu Tao, Ouyang Zheng-Biao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Plasma filling can significantly improve the efficiency and power of a vacuum device. In this paper, we first analyze the dispersion properties of a plasma-filled metal-photonic-crystal slow-wave structure (SWS), and then investigate the interaction procedure between a relativistic electron beam and the Cherenkov radiation in the plasma-filled metallic-photonic-crystal by the particle in cell method. We pay our attention to the influences of plasma density, cathode voltage, and guiding magnetic field on output frequency and power. The results show that the electric field strength in the SWS increases obviously at a fixed plasma density of 50 mTorr (1m mTorr=0.133 Pa). The device works at a stable single TM01 mode due to the good mode properties of the metal photonic crystal even if plasma is filled in it. The maximum value of Ez field along the z axis of the device increases from 46.34 MV/m without plasma to 79 MV/m with plasma. The value along the x axis increases from 136 MV/m without plasma to 185 MV/m with plasma. The working frequency (35.5 GHz) of the device, obtained from simulation, is consistent with the theoretical estimation (35.4 GHz). The power increases with the cathode voltage between 500 kV and 600 kV while the frequency increases only a little. When the magnetic field B increases, the output power first increases and then decreases. But the frequency is not affected due to the dispersion property. The output power of the device increases 20% when the air pressure increases from 0 to 100 mTorr. However, there is a pretty distribution of the field Ez along the angular direction only in an appropriate plasma density around 50 mTorr. According to the theory and simulation, the output power and efficiency can be improved in an appropriate range of plasma density. These results provide a basis for developing the plasma-filled vacuum devices.
      Corresponding author: Ouyang Zheng-Biao, zbouyang@szu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61275043), the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 61501302, 61307048), and Shenzhen Bureau, China (Grant No. CXB201105050064A).
    [1]

    Chen F F 1974 Introduction to Plasma Physics (Los Angeles: Plenum Press) p101

    [2]

    John S 1987 Phys. Rev. Lett. 58 2486

    [3]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [4]

    Sakai O, Sakaguchi T, Tachibana K 2005 Appl. Phys. Lett. 87 241505

    [5]

    Sakaguchi T, Sakai O, Tachibana K 2007 J. Appl. Phys. 101 073305

    [6]

    Sakai O, Tachibana K 2007 IEEE Trans. Plasma Sci. 35 1267

    [7]

    Qi L M, Yang Z Q, Lan F, Gao X, Li D Z 2010 Chin. Phys. B 19 034210

    [8]

    Qi L M, Yang Z Q, Lan F, Gao X, Shi Z J, Liang Z 2010 Acta Phys. Sin. 59 351 (in Chinese) [亓丽梅, 杨梓强, 兰峰, 高喜, 史宗君, 梁正 2010 59 351]

    [9]

    Ma L, Zhang H F, Liu S B 2008 Acta Phys. Sin. 57 5089 (in Chinese) [马力, 章海锋, 刘少斌 2008 57 5089]

    [10]

    Lo J, Sokoloff J, Callegari T, Boeuf J P 2010 Appl. Phys. Lett. 96 251501

    [11]

    Fu T, Yang Z Q, Tang X P, Shi Z J, Lan F 2014 Phys. Plasma 21 013106

    [12]

    Minami K, Kobayashi S, Hayatsu Y, Sato T 2002 IEEE Trans. Plasma Sci. 30 1196

    [13]

    Lou W R, Carmel Y, Antonsen T M, Destler J W W, Granatstein L V 1991 Phys. Rev. Lett. 67 2481

    [14]

    Liu W X, Yang Z Q, Liang Z 2004 Int. J. Infrared Milli. 25 1053

    [15]

    Wang H Y, Yang Z Q, Zhao L X, Liang Z 2005 IEEE Trans. Plasma Sci. 33 111

    [16]

    Wang H Y, Yang Z Q, Liang Z 2005 Nucl. Instrum. Meth. Phys. Res. A 539 37

    [17]

    Smirnova E I, Kesar A S, Mastovsky I, Shapiro M A, Temkin R J 2005 Phys. Rev. Lett. 95 074801

    [18]

    Jang K H, Jeon S G, Kim J, Won J H, So J K, Bak S H, Srivastava A, Jung S S, Park G S 2008 Appl. Phys. Lett. 93 211104

    [19]

    Nashed A I, Chaudhuri S K, Afavi-Naeini S 2012 IEEE Trans. Terahertz Sci. Technol. 2 642

    [20]

    Nanni E A, Lewis S M, Shapiro M A, Griffin R G, Temkin R J 2013 Phys. Rev. Lett. 111 235101

    [21]

    Fu T, Yang Z Q, Lan F, Shi Z J 2014 High Power Laser and Particle Beams 26 043001 (in Chinese) [傅涛, 杨梓强, 兰峰, 史宗君 2014 强激光与粒子束 26 043001]

    [22]

    Fu T, Yang Z Q, Ouyang Z B 2015 Acta Chin. Sin. 64 174205 (in Chinese) [傅涛, 杨梓强, 欧阳征标 2015 64 174205]

    [23]

    Goebel D M, Adler E A, Ponti E S, Feicht J R, Eisenhart R L, Lemke R W 1999 IEEE Trans. Plasma Sci. 27 800

    [24]

    Miller S M, Antonsen T M, Levush B, Alexander N V 1996 IEEE Trans. Plasma Sci. 24 859

    [25]

    Gao X, Yang Z Q, Qi L M, Lan F, Shi Z J, Li D Z, Liang Z 2009 Chin. Phys. B 18 2452

  • [1]

    Chen F F 1974 Introduction to Plasma Physics (Los Angeles: Plenum Press) p101

    [2]

    John S 1987 Phys. Rev. Lett. 58 2486

    [3]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [4]

    Sakai O, Sakaguchi T, Tachibana K 2005 Appl. Phys. Lett. 87 241505

    [5]

    Sakaguchi T, Sakai O, Tachibana K 2007 J. Appl. Phys. 101 073305

    [6]

    Sakai O, Tachibana K 2007 IEEE Trans. Plasma Sci. 35 1267

    [7]

    Qi L M, Yang Z Q, Lan F, Gao X, Li D Z 2010 Chin. Phys. B 19 034210

    [8]

    Qi L M, Yang Z Q, Lan F, Gao X, Shi Z J, Liang Z 2010 Acta Phys. Sin. 59 351 (in Chinese) [亓丽梅, 杨梓强, 兰峰, 高喜, 史宗君, 梁正 2010 59 351]

    [9]

    Ma L, Zhang H F, Liu S B 2008 Acta Phys. Sin. 57 5089 (in Chinese) [马力, 章海锋, 刘少斌 2008 57 5089]

    [10]

    Lo J, Sokoloff J, Callegari T, Boeuf J P 2010 Appl. Phys. Lett. 96 251501

    [11]

    Fu T, Yang Z Q, Tang X P, Shi Z J, Lan F 2014 Phys. Plasma 21 013106

    [12]

    Minami K, Kobayashi S, Hayatsu Y, Sato T 2002 IEEE Trans. Plasma Sci. 30 1196

    [13]

    Lou W R, Carmel Y, Antonsen T M, Destler J W W, Granatstein L V 1991 Phys. Rev. Lett. 67 2481

    [14]

    Liu W X, Yang Z Q, Liang Z 2004 Int. J. Infrared Milli. 25 1053

    [15]

    Wang H Y, Yang Z Q, Zhao L X, Liang Z 2005 IEEE Trans. Plasma Sci. 33 111

    [16]

    Wang H Y, Yang Z Q, Liang Z 2005 Nucl. Instrum. Meth. Phys. Res. A 539 37

    [17]

    Smirnova E I, Kesar A S, Mastovsky I, Shapiro M A, Temkin R J 2005 Phys. Rev. Lett. 95 074801

    [18]

    Jang K H, Jeon S G, Kim J, Won J H, So J K, Bak S H, Srivastava A, Jung S S, Park G S 2008 Appl. Phys. Lett. 93 211104

    [19]

    Nashed A I, Chaudhuri S K, Afavi-Naeini S 2012 IEEE Trans. Terahertz Sci. Technol. 2 642

    [20]

    Nanni E A, Lewis S M, Shapiro M A, Griffin R G, Temkin R J 2013 Phys. Rev. Lett. 111 235101

    [21]

    Fu T, Yang Z Q, Lan F, Shi Z J 2014 High Power Laser and Particle Beams 26 043001 (in Chinese) [傅涛, 杨梓强, 兰峰, 史宗君 2014 强激光与粒子束 26 043001]

    [22]

    Fu T, Yang Z Q, Ouyang Z B 2015 Acta Chin. Sin. 64 174205 (in Chinese) [傅涛, 杨梓强, 欧阳征标 2015 64 174205]

    [23]

    Goebel D M, Adler E A, Ponti E S, Feicht J R, Eisenhart R L, Lemke R W 1999 IEEE Trans. Plasma Sci. 27 800

    [24]

    Miller S M, Antonsen T M, Levush B, Alexander N V 1996 IEEE Trans. Plasma Sci. 24 859

    [25]

    Gao X, Yang Z Q, Qi L M, Lan F, Shi Z J, Li D Z, Liang Z 2009 Chin. Phys. B 18 2452

  • [1] Luo Xin-Yao, Xue Yu-Zhe, Xu Che, Du Chuang-Zhou, Liu Qing-Xiang. Analysis and simulation of X-band high-power microwave generation based on T-shaped four-period slow-wave structure. Acta Physica Sinica, 2024, 73(9): 094101. doi: 10.7498/aps.73.20231921
    [2] Lin Yue-Chai, Liu Fang, Huang Yi-Dong. Cherenkov radiation based on metamaterials. Acta Physica Sinica, 2020, 69(15): 154103. doi: 10.7498/aps.69.20200260
    [3] Wang Guang-Qiang, Wang Jian-Guo, Li Shuang, Wang Xue-Feng, Lu Xi-Cheng, Song Zhi-Min. Study on 0.34 THz overmoded surface wave oscillator. Acta Physica Sinica, 2015, 64(5): 050703. doi: 10.7498/aps.64.050703
    [4] Zhao Wen-Juan, Chen Zai-Gao, Guo Wei-Jie. Influence of slow wave structure explosive emission on high-power surface wave oscillator. Acta Physica Sinica, 2015, 64(15): 150702. doi: 10.7498/aps.64.150702
    [5] Fu Tao, Yang Zi-Qiang, Ouyang Zheng-Biao. Dispersion properties of plasma-filled metallic photonic crystal slow-wave structure. Acta Physica Sinica, 2015, 64(17): 174205. doi: 10.7498/aps.64.174205
    [6] Xie Wen-Qiu, Wang Zi-Cheng, Luo Ji-Run, Liu Qing-Lun. Analysis of high frequency characteristics of the sine waveguide. Acta Physica Sinica, 2014, 63(4): 044101. doi: 10.7498/aps.63.044101
    [7] Wang Dong, Xu Sha, Cao Yan-Wei, Qin Fen. Design of a metallic photonic crystal high power microwave mode converter. Acta Physica Sinica, 2014, 63(1): 018401. doi: 10.7498/aps.63.018401
    [8] Wang Bing, Wen Guang-Jun, Wang Wen-Xiang. Dispersion characteristics of the coaxial interlaced disk-loaded waveguide slow-wave structure. Acta Physica Sinica, 2014, 63(22): 224101. doi: 10.7498/aps.63.224101
    [9] Wei Pu, Zhou Ming-Gan, Zhu Lu, Zhang Jing, Wang Xue-Feng, Lv Dong-Ya, Cheng Ning, Yang Ming-Hua, Sun Xiao-Han. A testing method for assembled performances of helix slow-wave structure with a supported rod. Acta Physica Sinica, 2013, 62(9): 094401. doi: 10.7498/aps.62.094401
    [10] Li Shuang, Wang Jian-Guo, Tong Chang-Jiang, Wang Guang-Qiang, Lu Xi-Cheng, Wang Xue-Feng. Optimization of slow-wave structure in high power 0.34 THz radiation source. Acta Physica Sinica, 2013, 62(12): 120703. doi: 10.7498/aps.62.120703
    [11] Liu Yang, Xu Jin, Xu Xiong, Shen Fei, Wei Yan-Yu, Huang Min-Zhi, Tang Tao, Wang Wen-Xiang, Gong Yu-Bin. Research on the V-shape folded rectangular groove slow-wave structure. Acta Physica Sinica, 2012, 61(15): 154208. doi: 10.7498/aps.61.154208
    [12] Yi Hong-Xia, Xiao Liu, Liu Pu-Kun, Hao Bao-Liang, Li Fei, Li Guo-Chao. Optimization of slow wave structures of space traveling wave tube based on collectability of spent beam. Acta Physica Sinica, 2011, 60(6): 068403. doi: 10.7498/aps.60.068403
    [13] Li Yan-Lin, Xue Qian-Zhong, Du Chao-Hai, Hao Bao-Liang. Modified finite-difference frequency-domain method for two-dimensional metallic photonic crystal analysis. Acta Physica Sinica, 2010, 59(4): 2556-2563. doi: 10.7498/aps.59.2556
    [14] Gao Xi, Yang Zi-Qiang, Hou Jun, Qi Li-Mei, Lan Feng, Shi Zong-Jun, Li Da-Zhi, Liang Zheng. Relativistic Cherenkov source with modified photonic band-gap cells. Acta Physica Sinica, 2009, 58(2): 1105-1109. doi: 10.7498/aps.58.1105
    [15] Han Yong, Liu Yan-Wen, Ding Yao-Gen, Liu Pu-Kun. Study on the thermal interface resistance of the helix slow-wave structure. Acta Physica Sinica, 2009, 58(3): 1806-1811. doi: 10.7498/aps.58.1806
    [16] Lu Zhi-Gang, Wei Yan-Yu, Gong Yu-Bin, Wu Zhou-Miao, Wang Wen-Xiang. Study of high frequency characteristics of the rectangular waveguide grating slow-wave structure with arbitrary grooves. Acta Physica Sinica, 2007, 56(6): 3318-3323. doi: 10.7498/aps.56.3318
    [17] Lu Zhi-Gang, Gong Yu-Bin, Wei Yan-Yu, Wang Wen-Xiang. Study of 2D metallic photonic band gap structures. Acta Physica Sinica, 2006, 55(7): 3590-3596. doi: 10.7498/aps.55.3590
    [18] Zhang Jun, Zhong Hui-Huang. Investigation on longitudinal mode selection in O-type HPM devices. Acta Physica Sinica, 2005, 54(1): 206-210. doi: 10.7498/aps.54.206
    [19] Yue Ling-Na, Wang Wen-Xiang, Wei Yan-Yu, Gong Yu-Bin. The dispersion characteristics of the coaxial arbitrary-shaped-groove periodic slow-wave structure. Acta Physica Sinica, 2005, 54(9): 4223-4228. doi: 10.7498/aps.54.4223
    [20] Zhang Yong, Mo Yuan-Long, Xu Rui-Min, Yan Bo, Xie Xiao-Qiang. High-frequency properties of the disk-loaded waveguide filled with plasma. Acta Physica Sinica, 2005, 54(11): 5239-5245. doi: 10.7498/aps.54.5239
Metrics
  • Abstract views:  6030
  • PDF Downloads:  153
  • Cited By: 0
Publishing process
  • Received Date:  10 November 2015
  • Accepted Date:  08 January 2016
  • Published Online:  05 April 2016

/

返回文章
返回
Baidu
map