搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

修正的频域有限差分法在二维金属光子晶体分析中的应用

黎燕林 薛谦忠 杜朝海 郝保良

引用本文:
Citation:

修正的频域有限差分法在二维金属光子晶体分析中的应用

黎燕林, 薛谦忠, 杜朝海, 郝保良

Modified finite-difference frequency-domain method for two-dimensional metallic photonic crystal analysis

Li Yan-Lin, Xue Qian-Zhong, Du Chao-Hai, Hao Bao-Liang
PDF
导出引用
  • 与介质光子晶体相比,金属光子晶体的带隙特性在毫米波和亚毫米波波段有着重要的应用价值.基于Yee网格的频域有限差分法推导得出的本征模方程,求解后能方便而又可靠地得出介质光子晶体的带隙图和场分布.但由于金属与介质的本质差异,该方法不能直接应用于金属光子晶体.文中引入了金属表面边界条件,推导了二维金属周期结构的光子带隙本征模方程.通过数值计算,得出了不同晶格结构(正方/三角格子)下两种模式(TE/TM)的全禁带特性,并与介质周期结构的禁带特性进行对比,分析了金属周期结构在模式选择和器件集成方面的优点.
    In contrast to dielectric photonic crystals, the propagation characteristics of metallic photonic crystals are of great importance in millimeter wave and submillimeter wave applications. It is convenient and reliable to get the band diagrams and field distributions of photonic crystals after solutions of the eigenmode equations, which is derived from the Yee-mesh-based finite-difference frequency-domain method. However, this method cannot be used for the analysis of metallic photonic crystals because of the essential distinctions between metal and dielectric. Based on this method, we derive eigenmode equations for two-dimensional metallic photonic crystals by introducing the metal surface boundary conditions. And then, after some numerical calculations, the transverse electric mode and the transverse magnetic mode global band gaps of different lattice structures are obtained, including both square lattice and triangular lattice. Finally, we discuss the advantages of metallic periodic structures in mode selection and device integration by the comparison between metallic photonic band gap and dielectric photonic band gap.
    • 基金项目: 国家自然科学基金(批准号:60871051,60871047)资助的课题.
    [1]

    [1]Yablonoviteh E 1987 Phys.Rev.Lett.58 2059

    [2]

    [2]John S 1987 Phys.Rev.Lett.58 2486

    [3]

    [3]Attila M, Chen J C, Kurland I, Fan S H, Villeneuve P R, Joannopoulos J D 1996 Phys.Rev.Lett.77 3787

    [4]

    [4]Brechet F, Marcou J, Pagnoux D, Roy P 2000 Opt. Fiber Technol. 6 181

    [5]

    [5]Sigalas M M, Chan C T, Ho K M, Soukoulis C M 1995 Phys. Rev. B 52 11744

    [6]

    [6]Sievenpiper D F, Sickmiller M E, Yablonovitch E 1996 Phys.Rev.Lett.76 2480

    [7]

    [7]Pendry J B, Holden A J, Stewart W J, Youngs I 1996 Phys.Rev.Lett.76 4773

    [8]

    [8]Shapiro M A, Brown W J, Mastovsky I, Sirigiri J R, Temkin R J 2001 Phys. Rev. Special Topics: Accelerators and Beams 4 042001

    [9]

    [9]Sirigiri J R, Kreischer K E, Machuzak J, Mastovsky I, Shapiro M A, Temkin R J 2001 Phys. Rev. Lett. 86 5628

    [10]

    ]Dong J W, Hu X H, Wang H Z 2007 Chin. Phys. 16 1057

    [11]

    ]Kuzimiak V, Maradudin, Pincemin F 1994 Phys. Rev. B 50 1683

    [12]

    ]Gong Y B, Lu Z G, Wang W X, Wei Y Y 2006 Acta Phys. Sin. 55 3590 (in Chinese) [宫玉彬、路志刚、王文祥、魏彦玉 2006 55 3590]

    [13]

    ]Qiu M, He S L 2000 J. App. Phys. 87 8268

    [14]

    ]Chen H B, Chen X S, Li H J, Lu W, Wang L L, Wang S W, Xia H, Zeng Y, Zhang J B, Zhou R L 2006 Acta Phys. Sin. 57 3506 (in Chinese) [陈洪波、陈效双、李宏建、陆卫、王玲玲、王少伟、夏辉、曾勇、张建标、周仁龙 2008 57 3506]

    [15]

    ]Pendry J B, Mackinnon A 1992 Phys. Rev. Lett. 69 2772

    [16]

    ]Sigalas M, Soukoulis C M, Economou E N 1993 Phys. Rev.B 48 14121

    [17]

    ]Hao B L, Liu P K, Tang C J 2006 Acta Phys. Sin. 55 1862 (in Chinese) [郝保良、刘濮鲲、唐昌建 2006 55 1862]

    [18]

    ]Zhu Z M, Brown T G 2002 Opt. Express 10 853

    [19]

    ]Yu C P, Chang H C 2004 Opt. Express 12 1397

    [20]

    ]Chang H C, Yu C P 2004 Opt. Express 12 6165

    [21]

    ]Ando T, Nakayama H, Numata S, Yamauchi J, Nakano H 2002 J. Lightwave Technol. 20 1627

    [22]

    ]Guo S P, Wu F, Albin S 2004 Opt. Express 12 1741

    [23]

    ]Shen L F, He S L, Wu L 2002 Acta Phys. Sin. 51 1133 (in Chinese) [沈林放、何赛灵、吴良 2002 51 1133]

    [24]

    ]Guo J Y, Chen H, Li H Q, Zhang Y W 2008 Chin. Phys. 17 2544

    [25]

    ]Berenger J P 1994 J. Comput.Phys. 114 185

    [26]

    ]Smirnova E I, Chen C, Shapiro M A, Sirigiri J R, Temkin R J 2002 J. App. Phys. 91 960

    [27]

    ]Cai X H, Zheng W H, Ma X T, Ren G, Xia J B 2005 Chin. Phys. 14 2507

    [28]

    ]Arriaga J, Ward A J, Pendry J B 1999 Phys. Rev. B 59 1874

    [29]

    ]Xiao S S, Shen L F, He S L 2002 Acta Phys. Sin. 51 2858 (in Chinese) [肖三水、沈林放、何赛灵 2002 51 2858]

    [30]

    ]Chen X W, Lin X S, Lan S 2005 Chin.Phys. 14 366

  • [1]

    [1]Yablonoviteh E 1987 Phys.Rev.Lett.58 2059

    [2]

    [2]John S 1987 Phys.Rev.Lett.58 2486

    [3]

    [3]Attila M, Chen J C, Kurland I, Fan S H, Villeneuve P R, Joannopoulos J D 1996 Phys.Rev.Lett.77 3787

    [4]

    [4]Brechet F, Marcou J, Pagnoux D, Roy P 2000 Opt. Fiber Technol. 6 181

    [5]

    [5]Sigalas M M, Chan C T, Ho K M, Soukoulis C M 1995 Phys. Rev. B 52 11744

    [6]

    [6]Sievenpiper D F, Sickmiller M E, Yablonovitch E 1996 Phys.Rev.Lett.76 2480

    [7]

    [7]Pendry J B, Holden A J, Stewart W J, Youngs I 1996 Phys.Rev.Lett.76 4773

    [8]

    [8]Shapiro M A, Brown W J, Mastovsky I, Sirigiri J R, Temkin R J 2001 Phys. Rev. Special Topics: Accelerators and Beams 4 042001

    [9]

    [9]Sirigiri J R, Kreischer K E, Machuzak J, Mastovsky I, Shapiro M A, Temkin R J 2001 Phys. Rev. Lett. 86 5628

    [10]

    ]Dong J W, Hu X H, Wang H Z 2007 Chin. Phys. 16 1057

    [11]

    ]Kuzimiak V, Maradudin, Pincemin F 1994 Phys. Rev. B 50 1683

    [12]

    ]Gong Y B, Lu Z G, Wang W X, Wei Y Y 2006 Acta Phys. Sin. 55 3590 (in Chinese) [宫玉彬、路志刚、王文祥、魏彦玉 2006 55 3590]

    [13]

    ]Qiu M, He S L 2000 J. App. Phys. 87 8268

    [14]

    ]Chen H B, Chen X S, Li H J, Lu W, Wang L L, Wang S W, Xia H, Zeng Y, Zhang J B, Zhou R L 2006 Acta Phys. Sin. 57 3506 (in Chinese) [陈洪波、陈效双、李宏建、陆卫、王玲玲、王少伟、夏辉、曾勇、张建标、周仁龙 2008 57 3506]

    [15]

    ]Pendry J B, Mackinnon A 1992 Phys. Rev. Lett. 69 2772

    [16]

    ]Sigalas M, Soukoulis C M, Economou E N 1993 Phys. Rev.B 48 14121

    [17]

    ]Hao B L, Liu P K, Tang C J 2006 Acta Phys. Sin. 55 1862 (in Chinese) [郝保良、刘濮鲲、唐昌建 2006 55 1862]

    [18]

    ]Zhu Z M, Brown T G 2002 Opt. Express 10 853

    [19]

    ]Yu C P, Chang H C 2004 Opt. Express 12 1397

    [20]

    ]Chang H C, Yu C P 2004 Opt. Express 12 6165

    [21]

    ]Ando T, Nakayama H, Numata S, Yamauchi J, Nakano H 2002 J. Lightwave Technol. 20 1627

    [22]

    ]Guo S P, Wu F, Albin S 2004 Opt. Express 12 1741

    [23]

    ]Shen L F, He S L, Wu L 2002 Acta Phys. Sin. 51 1133 (in Chinese) [沈林放、何赛灵、吴良 2002 51 1133]

    [24]

    ]Guo J Y, Chen H, Li H Q, Zhang Y W 2008 Chin. Phys. 17 2544

    [25]

    ]Berenger J P 1994 J. Comput.Phys. 114 185

    [26]

    ]Smirnova E I, Chen C, Shapiro M A, Sirigiri J R, Temkin R J 2002 J. App. Phys. 91 960

    [27]

    ]Cai X H, Zheng W H, Ma X T, Ren G, Xia J B 2005 Chin. Phys. 14 2507

    [28]

    ]Arriaga J, Ward A J, Pendry J B 1999 Phys. Rev. B 59 1874

    [29]

    ]Xiao S S, Shen L F, He S L 2002 Acta Phys. Sin. 51 2858 (in Chinese) [肖三水、沈林放、何赛灵 2002 51 2858]

    [30]

    ]Chen X W, Lin X S, Lan S 2005 Chin.Phys. 14 366

  • [1] 洪文鹏, 兰景瑞, 李浩然, 李博宇, 牛晓娟, 李艳. 基于时域有限差分法的核壳双金属纳米颗粒光吸收率反转行为.  , 2021, 70(20): 207801. doi: 10.7498/aps.70.20210602
    [2] 傅涛, 欧阳征标. 等离子体填充金属光子晶体Cherenkov辐射源模拟研究.  , 2016, 65(7): 074208. doi: 10.7498/aps.65.074208
    [3] 傅涛, 杨梓强, 欧阳征标. 等离子体填充金属光子晶体慢波结构色散特性研究.  , 2015, 64(17): 174205. doi: 10.7498/aps.64.174205
    [4] 王冬, 徐莎, 曹延伟, 秦奋. 光子晶体高功率微波模式转换器设计.  , 2014, 63(1): 018401. doi: 10.7498/aps.63.018401
    [5] 乔海亮, 王玥, 陈再高, 张殿辉. 全矢量有限差分法分析任意截面波导模式.  , 2013, 62(7): 070204. doi: 10.7498/aps.62.070204
    [6] 李春早, 刘少斌, 孔祥鲲, 卞博锐, 张学勇. 外磁场与温度对低温超导光子晶体低频禁带特性的影响.  , 2012, 61(7): 075203. doi: 10.7498/aps.61.075203
    [7] 袁桂芳, 韩利红, 俞重远, 刘玉敏, 芦鹏飞. 二维光子晶体禁带特性研究.  , 2011, 60(10): 104214. doi: 10.7498/aps.60.104214
    [8] 杨毅彪, 王拴锋, 李秀杰, 王云才, 梁伟. 介质柱型二维Triangular格子光子晶体的禁带特性.  , 2010, 59(7): 5073-5077. doi: 10.7498/aps.59.5073
    [9] 任晓斌, 翟天瑞, 任芝, 林晶, 周静, 刘大禾. 非线性曝光对三维全息光子晶体禁带特性的影响.  , 2009, 58(5): 3208-3213. doi: 10.7498/aps.58.3208
    [10] 方晓惠, 柴路, 胡明列, 栗岩锋, 王清月. 七芯光子晶体光纤结构优化的数值分析.  , 2009, 58(4): 2495-2500. doi: 10.7498/aps.58.2495
    [11] 张浩, 赵建林, 张晓娟. 带缺陷结构的二维磁性光子晶体的数值模拟分析.  , 2009, 58(5): 3532-3537. doi: 10.7498/aps.58.3532
    [12] 程旭攀, 曹全喜. 二维圆柱形光子晶体的完全禁带研究.  , 2008, 57(5): 3249-3253. doi: 10.7498/aps.57.3249
    [13] 殷海荣, 宫玉彬, 魏彦玉, 岳玲娜, 路志刚, 巩华荣, 黄民智, 王文祥. 有限开敞介质光子晶体的模式及其带结构分析.  , 2008, 57(6): 3562-3570. doi: 10.7498/aps.57.3562
    [14] 杨光杰, 孔凡敏, 李 康, 梅良模. 金属介质在时域有限差分中的几种处理方法.  , 2007, 56(7): 4252-4255. doi: 10.7498/aps.56.4252
    [15] 刘大刚, 周 俊, 刘盛纲. 用时域有限差分法实现金属支撑杆的计算机模拟.  , 2007, 56(12): 6924-6930. doi: 10.7498/aps.56.6924
    [16] 张 浩, 赵建林, 张晓娟, 底 楠. 二维磁性光子晶体及其模场分析.  , 2007, 56(6): 3546-3552. doi: 10.7498/aps.56.3546
    [17] 刘 欢, 姚建铨, 李恩邦, 温午麒, 张 强, 王 鹏. 三维光子晶体典型结构完全禁带的最佳参数理论分析.  , 2006, 55(1): 230-237. doi: 10.7498/aps.55.230
    [18] 路志刚, 宫玉彬, 魏彦玉, 王文祥. 二维金属光子晶体的带结构研究.  , 2006, 55(7): 3590-3596. doi: 10.7498/aps.55.3590
    [19] 王 刚, 温激鸿, 韩小云, 赵宏刚. 二维声子晶体带隙计算中的时域有限差分方法.  , 2003, 52(8): 1943-1947. doi: 10.7498/aps.52.1943
    [20] 郑君, 叶志成, 唐伟国, 刘大禾. 体积全息图中的光子禁带.  , 2001, 50(11): 2144-2148. doi: 10.7498/aps.50.2144
计量
  • 文章访问数:  8274
  • PDF下载量:  1199
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-05-04
  • 修回日期:  2009-08-03
  • 刊出日期:  2010-02-05

/

返回文章
返回
Baidu
map