Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Spherical Dirac equation on the lattice and the problem of the spurious states

Zhao Bin

Citation:

Spherical Dirac equation on the lattice and the problem of the spurious states

Zhao Bin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • With the development of radioactive ion beam facilities, the study of exotic nuclei with unusual N/Z ratio has attracted much attention. Compared with the stable nuclei, the exotic nuclei have many novel features, such as the halo phenomenon. In order to describe the halo phenomenon with the diffused density distribution, the correct asymptotic behaviors of wave functions should be treated properly. The relativistic continuum Hartree-Bogoliubov (RCHB) theory which provides a unified and self-consistent description of mean field, pair correlation and continuum has achieved great success in describing the spherical exotic nuclei. In order to study the halo phenomenon in deformed nuclei, it is necessary to extend RCHB theory to the deformed case. However, solving the relativistic Hartree-Bogoliubov equation in space is extremely difficult and time consuming. Imaginary time step method is an efficient method to solve differential equations in coordinate space. It has been used extensively in the nonrelativistic case. For Dirac equation, it is very challenging to use the imaginary time step method due to the Dirac sea. This problem can be solved by the inverse Hamiltonian method. However, the problem of spurious states comes out. In this paper, we solve the radial Dirac equation by the imaginary time step method in coordinate space and study the problem of spurious states. It can be proved that for any potential, when using the three-point differential formula to discretize the first-order derivative operator, the energies of the single-particle states respectively with quantum numbers and - are identical. One of them is a physical state and the other is a spurious state. Although they have the same energies, their wave functions have different behaviors. The wave function of physical state is smooth in space while that of spurious state fluctuates dramatically. Following the method in lattice quantum chromodynamics calculation, the spurious state in radial Dirac equation can be removed by introducing the Wilson term. Taking Woods-Saxon potential for example, the imaginary time step method with the Wilson term is implanted successfully and provides the same results as those from the shooting method, which demonstrates its future application to solving the Dirac equation in coordinate space.
      Corresponding author: Zhao Bin, bzhao@buaa.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CB834400), the National Natural Science Foundation of China (Grants Nos. 11175002, 11335002, 11375015), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110001110087).
    [1]

    Tanihata I 1995 Prog. Part. Nucl. Phys. 35 505

    [2]

    Ozawa A, Kobayashi T, Suzuki T, Yoshida K, Tanihata I 2000 Phys. Rev. Lett. 84 5493

    [3]

    Zilges A, Babilon M, Hartmann T, Savran D, Volz S 2005 Prog. Part. Nucl. Phys. 55 408

    [4]

    Meng J, Toki H, Zhou S G, Zhang S Q, Long W H, Geng L S 2006 Prog. Part. Nucl. Phys. 57 470

    [5]

    Meng J, Ring P 1996 Phys. Rev. Lett. 77 3963

    [6]

    Meng J, Ring P 1998 Phys. Rev. Lett. 80 460

    [7]

    Meng J, Toki H, Zeng J Y, Zhang S Q, Zhou S G 2002 Phys. Rev. C 65 041302

    [8]

    Meng J, Tanihata I, Yamaji S 1998 Phys. Lett. B 419 1

    [9]

    Meng J, Zhou S G, Tanihata I 2002 Phys. Lett. B 532 209

    [10]

    Meng J, Sugawara-Tanabe K, Yamaji S, Ring P, Arima A 1998 Phys. Rev. C 58 R628

    [11]

    Meng J, Sugawara-Tanabe K, Yamaji S, Arima A 1999 Phys. Rev. C 59 154

    [12]

    Ginocchio J N 1997 Phys. Rev. Lett. 78 436

    [13]

    Ginocchio J N, Leviatan A, Meng J, Zhou S G 1997 Phys. Rev. C 69 034303

    [14]

    Guo J Y 2012 Phys. Rev. C 85 021302

    [15]

    Lu B N, Zhao E G, Zhou S G 2012 Phys. Rev. Lett. 109 072501

    [16]

    Liang H Z, Shen S H, Zhao P W, Meng J 2013 Phys. Rev. C 87 014334

    [17]

    Shen S H, Liang H Z, Zhao P W, Zhang S Q, Meng J 2013 Phys. Rev. C 88 024311

    [18]

    Guo J Y, Chen S W, Niu Z M, Li D P, Liu Q 2014 Phys. Rev. Lett. 112 062502

    [19]

    Liang H Z, Meng J, Zhou S G 2015 Phys. Rep. 570 1

    [20]

    Zhang M C 2009 Acta Phys. Sin. 58 61 (in Chinese) [张民仓 2009 58 61]

    [21]

    Lu H F, Meng J 2002 Chin. Phys. Lett. 19 1775

    [22]

    Lu H F, Meng J, Zhang S Q, Zhou S G 2003 Eur. Phys. J. A 17 19

    [23]

    Zhang W, Meng J, Zhang S Q, Geng L S, Toki H 2005 Nucl. Phys. A 753 106

    [24]

    Qu X Y, Chen Y, Zhang S Q, Zhao P W, Shin I J, Lim Y, Kim Y, Meng J 2013 Sci. China. Phys. Mech. 56 2031

    [25]

    Sun B H, Meng J 2008 Chin. Phys. Lett. 25 2429

    [26]

    Li Z, Niu Z M, Sun B H, Wang N, Meng J 2012 Acta Phys. Sin. 61 072601 (in Chinese) [李竹, 牛中明, 孙保华, 王宁, 孟杰2012 61 072601]

    [27]

    Price C E, Walker G E 1987 Phys. Rev. C 36 354

    [28]

    Meng J, Lu H F, Zhang S Q, Zhou S G 2003 Nucl. Phys. A 722 C366

    [29]

    Zhou S G, Meng J, Ring P 2003 Phys. Rev. C 68 034323

    [30]

    Zhou S G, Meng J, Ring P, Zhao E G 2010 Phys. Rev. C 82 3481

    [31]

    Davies K T R, Flocard H, Krieger S, Weiss M S 1980 Nucl. Phys. A 342 111

    [32]

    Bonche P, Flocard H, Heenen P H 2005 Comput. Phys. Commun. 171 49

    [33]

    Zhang Y, Liang H Z, Meng J 2010 Int. J. Mod. Phys. E 19 55

    [34]

    Hagino K, Tanimura Y 2010 Phys. Rev. C 82 057301

    [35]

    Grant I P 1982 Phys. Rev. A 25 1230

    [36]

    Salomonson S, ster P 1989 Phys. Rev. A 40 5548

    [37]

    Tanimura Y, Hagino K, Liang H Z 2015 Prog. Theor. Exp. Phys. 2015 073D01

    [38]

    Zhao S 2007 Comput. Method. Appl. M. 196 5031

    [39]

    Shabaev V M, Tupitsyn I I, Yerokhin V A, Plunien G, Soff G 2004 Phys. Rev. Lett. 93 130405

    [40]

    Pestka G 2003 Phys. Scripta. 68 254

    [41]

    Mller C, Grn N, Scheid W 1998 Phys. Lett. A 242 245

    [42]

    Wilson K G 1977 Proceedings of the First Half of the 1975 International School of Subnuclear Physics Erice, Sicily, July 11-August 1, 1975 p69

    [43]

    Serot B D, Walecka J D 1986 Adv. Nucl. Phys. 16

    [44]

    Reinhard P G 1989 Rep. Prog. Phys. 52 439

    [45]

    Meng J 1998 Nucl. Phys. A 635 3

    [46]

    Abramowitz M, Stegun I A 1964 Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables (New York: Dover Publications) p914

    [47]

    Koepf W, Ring P 1991 Z. Phys. A: Hadrons Nucl. 339 81

  • [1]

    Tanihata I 1995 Prog. Part. Nucl. Phys. 35 505

    [2]

    Ozawa A, Kobayashi T, Suzuki T, Yoshida K, Tanihata I 2000 Phys. Rev. Lett. 84 5493

    [3]

    Zilges A, Babilon M, Hartmann T, Savran D, Volz S 2005 Prog. Part. Nucl. Phys. 55 408

    [4]

    Meng J, Toki H, Zhou S G, Zhang S Q, Long W H, Geng L S 2006 Prog. Part. Nucl. Phys. 57 470

    [5]

    Meng J, Ring P 1996 Phys. Rev. Lett. 77 3963

    [6]

    Meng J, Ring P 1998 Phys. Rev. Lett. 80 460

    [7]

    Meng J, Toki H, Zeng J Y, Zhang S Q, Zhou S G 2002 Phys. Rev. C 65 041302

    [8]

    Meng J, Tanihata I, Yamaji S 1998 Phys. Lett. B 419 1

    [9]

    Meng J, Zhou S G, Tanihata I 2002 Phys. Lett. B 532 209

    [10]

    Meng J, Sugawara-Tanabe K, Yamaji S, Ring P, Arima A 1998 Phys. Rev. C 58 R628

    [11]

    Meng J, Sugawara-Tanabe K, Yamaji S, Arima A 1999 Phys. Rev. C 59 154

    [12]

    Ginocchio J N 1997 Phys. Rev. Lett. 78 436

    [13]

    Ginocchio J N, Leviatan A, Meng J, Zhou S G 1997 Phys. Rev. C 69 034303

    [14]

    Guo J Y 2012 Phys. Rev. C 85 021302

    [15]

    Lu B N, Zhao E G, Zhou S G 2012 Phys. Rev. Lett. 109 072501

    [16]

    Liang H Z, Shen S H, Zhao P W, Meng J 2013 Phys. Rev. C 87 014334

    [17]

    Shen S H, Liang H Z, Zhao P W, Zhang S Q, Meng J 2013 Phys. Rev. C 88 024311

    [18]

    Guo J Y, Chen S W, Niu Z M, Li D P, Liu Q 2014 Phys. Rev. Lett. 112 062502

    [19]

    Liang H Z, Meng J, Zhou S G 2015 Phys. Rep. 570 1

    [20]

    Zhang M C 2009 Acta Phys. Sin. 58 61 (in Chinese) [张民仓 2009 58 61]

    [21]

    Lu H F, Meng J 2002 Chin. Phys. Lett. 19 1775

    [22]

    Lu H F, Meng J, Zhang S Q, Zhou S G 2003 Eur. Phys. J. A 17 19

    [23]

    Zhang W, Meng J, Zhang S Q, Geng L S, Toki H 2005 Nucl. Phys. A 753 106

    [24]

    Qu X Y, Chen Y, Zhang S Q, Zhao P W, Shin I J, Lim Y, Kim Y, Meng J 2013 Sci. China. Phys. Mech. 56 2031

    [25]

    Sun B H, Meng J 2008 Chin. Phys. Lett. 25 2429

    [26]

    Li Z, Niu Z M, Sun B H, Wang N, Meng J 2012 Acta Phys. Sin. 61 072601 (in Chinese) [李竹, 牛中明, 孙保华, 王宁, 孟杰2012 61 072601]

    [27]

    Price C E, Walker G E 1987 Phys. Rev. C 36 354

    [28]

    Meng J, Lu H F, Zhang S Q, Zhou S G 2003 Nucl. Phys. A 722 C366

    [29]

    Zhou S G, Meng J, Ring P 2003 Phys. Rev. C 68 034323

    [30]

    Zhou S G, Meng J, Ring P, Zhao E G 2010 Phys. Rev. C 82 3481

    [31]

    Davies K T R, Flocard H, Krieger S, Weiss M S 1980 Nucl. Phys. A 342 111

    [32]

    Bonche P, Flocard H, Heenen P H 2005 Comput. Phys. Commun. 171 49

    [33]

    Zhang Y, Liang H Z, Meng J 2010 Int. J. Mod. Phys. E 19 55

    [34]

    Hagino K, Tanimura Y 2010 Phys. Rev. C 82 057301

    [35]

    Grant I P 1982 Phys. Rev. A 25 1230

    [36]

    Salomonson S, ster P 1989 Phys. Rev. A 40 5548

    [37]

    Tanimura Y, Hagino K, Liang H Z 2015 Prog. Theor. Exp. Phys. 2015 073D01

    [38]

    Zhao S 2007 Comput. Method. Appl. M. 196 5031

    [39]

    Shabaev V M, Tupitsyn I I, Yerokhin V A, Plunien G, Soff G 2004 Phys. Rev. Lett. 93 130405

    [40]

    Pestka G 2003 Phys. Scripta. 68 254

    [41]

    Mller C, Grn N, Scheid W 1998 Phys. Lett. A 242 245

    [42]

    Wilson K G 1977 Proceedings of the First Half of the 1975 International School of Subnuclear Physics Erice, Sicily, July 11-August 1, 1975 p69

    [43]

    Serot B D, Walecka J D 1986 Adv. Nucl. Phys. 16

    [44]

    Reinhard P G 1989 Rep. Prog. Phys. 52 439

    [45]

    Meng J 1998 Nucl. Phys. A 635 3

    [46]

    Abramowitz M, Stegun I A 1964 Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables (New York: Dover Publications) p914

    [47]

    Koepf W, Ring P 1991 Z. Phys. A: Hadrons Nucl. 339 81

  • [1] Zhao Yan-Jun, Tan Ning, Wang Yu-Qi, Zheng Ya-Rui, Wang Hui, Liu Wu-Ming. Quantum state transport in a square-lattice superconducting qubit circuit under gauge potential. Acta Physica Sinica, 2023, 72(10): 100304. doi: 10.7498/aps.72.20222349
    [2] Wan Zhi-Long, Fan Hong-Yi. Thermo-vacuum state in a negative binomial optical field and its application. Acta Physica Sinica, 2015, 64(19): 190301. doi: 10.7498/aps.64.190301
    [3] Fan Hong-Yi, Wu Ze. Statistical properties of binomial and negative-binomial combinational optical field state and its generation in quantum diffusion channel. Acta Physica Sinica, 2015, 64(8): 080303. doi: 10.7498/aps.64.080303
    [4] Song Jun, Xu Ye-Jun, Fan Hong-Yi. Wavelet transform of odd- and even-binomial states. Acta Physica Sinica, 2011, 60(8): 084208. doi: 10.7498/aps.60.084208
    [5] Wang Xia, Wang Zi-Xia, Lü Hao, Zhao Qiu-Ling. Short-cut transformation from one-dimensional to three-dimensional interference pattern by holographic simulation. Acta Physica Sinica, 2010, 59(7): 4656-4660. doi: 10.7498/aps.59.4656
    [6] Chen He-Sheng. Phase transition of lattice quantum chromodynamics with 2+1 flavor fermions at finite temperature and finite density. Acta Physica Sinica, 2009, 58(10): 6791-6797. doi: 10.7498/aps.58.6791
    [7] Taogetusang, Sirendaoerji. The auxiliary equation for constructing the exact solutions of the variable coefficient combined KdV equation with forcible term. Acta Physica Sinica, 2008, 57(3): 1295-1300. doi: 10.7498/aps.57.1295
    [8] Zhang Min-Cang, Wang Zhen-Bang. Bound states of the Klein-Gordon equation and Dirac equation with the Manning-Rosen scalar and vector potentials. Acta Physica Sinica, 2006, 55(2): 521-524. doi: 10.7498/aps.55.521
    [9] Zhang Min-Cang, Wang Zhen-Bang. Bound state solutions of the Dirac equation with the Makarov potentials. Acta Physica Sinica, 2006, 55(12): 6229-6233. doi: 10.7498/aps.55.6229
    [10] Chen Gang. Bound states for Dirac equation with Wood-Saxon potential. Acta Physica Sinica, 2004, 53(3): 680-683. doi: 10.7498/aps.53.680
    [11] CHEN GANG. BOUND STATES OF KLEIN-GORDON EQUATION AND DIRAC EQUATION FOR SCALAR AND VECTOR P?SCHL-TELLER-TYPE POTENTIALS. Acta Physica Sinica, 2001, 50(9): 1651-1653. doi: 10.7498/aps.50.1651
    [12] HOU CHUN-FENG, LI YAN, ZHOU ZHONG-XIANG. BOUND STATES OF KLEIN-GORDON EQUATION AND DIRAC EQUATION WITH SCALAR AND VECTOR MORSE-TYPE POTENTIALS. Acta Physica Sinica, 1999, 48(11): 1999-2003. doi: 10.7498/aps.48.1999
    [13] WANG XIAO-GUANG, YU RONG-JIN, LI WEN. THE PROPERTIES OF DISPLACED BINOMIAL STATES AND DISPLACED NEGATIVE BINOMIAL STATES AND THEIR INTERACTION WITH TWO-LEVEL ATOMS. Acta Physica Sinica, 1998, 47(11): 1798-1803. doi: 10.7498/aps.47.1798
    [14] LI ZHI-KUAN. QUASI-DIRAC EQUATION IN FREE-ELECTRON LASER. Acta Physica Sinica, 1997, 46(7): 1349-1353. doi: 10.7498/aps.46.1349
    [15] ZHU ZUO-NONG. SOLITON-LIKE SOLUTIONS OF GENERALIZED KdV EQUA-TION WITH EXTERNAL FORCE TERM. Acta Physica Sinica, 1992, 41(10): 1561-1566. doi: 10.7498/aps.41.1561
    [16] HUANG HONG-BIN. BINOMIAL STATES OF THE TWO-LEVEL ATOMIC SYSTEM. Acta Physica Sinica, 1991, 40(4): 533-540. doi: 10.7498/aps.40.533
    [17] HU SI-ZHU, SU RU-KENG. BOUND STATES OF THE DIRAC EQUATIONS WITH HULTHéN-TYPE POTENTIALS. Acta Physica Sinica, 1991, 40(8): 1201-1206. doi: 10.7498/aps.40.1201
    [18] HE XIANG-HAO, XIAN DING-CHANG. THE SCHWINGER-DYSON EQUATIONS OF THE WILSON LOOP VARIABLE IN THE LATXTICE GAUGEX FIELD THEORY AND THE PROBLEM OF UNIVERSALITY. Acta Physica Sinica, 1985, 34(7): 882-891. doi: 10.7498/aps.34.882
    [19] . Acta Physica Sinica, 1965, 21(4): 720-735. doi: 10.7498/aps.21.720
    [20] ВЛИЯНИЕ АНГАРМОНИЧЕСКИХ ЧЛЕНОВ В КОЛЕБАТЕЛЬНОМ ДВИЖЕНИИ СФЕРИЧЕСКИХ ЯДЕР. Acta Physica Sinica, 1964, 20(2): 159-163. doi: 10.7498/aps.20.159
Metrics
  • Abstract views:  5403
  • PDF Downloads:  295
  • Cited By: 0
Publishing process
  • Received Date:  15 October 2015
  • Accepted Date:  30 November 2015
  • Published Online:  05 March 2016

/

返回文章
返回
Baidu
map