-
有限温度下的光场理论的核心是引入热真空态,它也是利用量子统计手段全面研究电磁场的基础.本文在Takahashi和Umezawa的热场动力学理论基础上, 首次采用有序算符内的积分方法对负二项式光场,s=s+1(1-)n|nn|寻找相应的热真空态. 发现该热真空态是基于在混沌光场所对应的热真空态上的虚模激发, 或取负二项式纯态的形式s+1(1-)n|n,+,其中代表虚模自由度. 对此热真空态求纯态平均可方便地得到负二项式光场的Wigner 函数和光子数涨落.
-
关键词:
- 负二项式光场 /
- 热真空态 /
- 有序算符内的积分方法 /
- 虚模激发
The core of optical field theory at finite temperature is how to introduce the thermo-vacuum state which is the basis of comprehensive investigation of electromagnetic field by virtue of quantum statistic method. Based on the spirit of thermo-field dynamics initiated by Takahashi and Umezawa, we first employ the integration method within the ordered product of operators to search for thermo-vacuum state for the optical negative binomial state (NBS)s=s+1(1-)n|n,+,+,which takes the form of pure negative binomial state. The newly found thermo-vacuum state brings convenience for evaluating the Wigner function of NBS and the fluctuation of photon numbers in NBS.-
Keywords:
- negative binomial optical field /
- thermo vacuum state /
- integration method within ordered product of operators /
- fictitious-mode excitation
[1] Hu L Y, Fan H Y 2009 Mod. Phys. Lett. A 24 2263
[2] Fan H Y, Jiang N Q 2008 Phys. Scr. 78 045402
[3] Umezawa H 1996 Int. J. Mod. Phys. B 10 1563
[4] Takahashi Y, Umezawa H 1993 Phys. Lett. A 174 206
[5] Zhang Z X, Fan H Y 1993 Phys. Lett. A 174 206
[6] Hu L Y, Fan H Y 2009 Chin. Phys. Lett. 26 090307
[7] Xu X X, Hu L Y, Guo Q, Fan H Y 2013 Chin. Phys. B 22 090302
[8] Hu L Y, Zhang Z M 2012 Chin. Opt. Lett. 10 082701
[9] Agarwal G S 1992 Phys. Rev. A 45 1787
[10] Fan H Y, Lou S Y, Pan X Y, Da C 2013 Acta. Phys. Sin. 62 240301(in Chinese) [范洪义, 楼森岳, 潘孝胤, 笪诚 2013 62 240301]
[11] Fan H Y, Klauder J R 1994 Phys. Rev. A 49 704
[12] Fan H Y, Zhan D H, Yu W J, Zhou J 2012 Acta. Phys. Sin. 61 110302(in Chinese) [范洪义, 展德会, 于文健, 周军 2012 61 110302]
[13] Fan H Y, Ruan T N 1983 Commun. Theor. Phys. 2 1563
[14] Fan H Y, Ruan T N 1984 Commun. Theor. Phys. 3 345
[15] Fan H Y, Fan Y 1997 Mod. Phys. Lett. A 12 2325
[16] Fan H Y, Zaidi H R 1987 Phys. Lett. A 124 303
-
[1] Hu L Y, Fan H Y 2009 Mod. Phys. Lett. A 24 2263
[2] Fan H Y, Jiang N Q 2008 Phys. Scr. 78 045402
[3] Umezawa H 1996 Int. J. Mod. Phys. B 10 1563
[4] Takahashi Y, Umezawa H 1993 Phys. Lett. A 174 206
[5] Zhang Z X, Fan H Y 1993 Phys. Lett. A 174 206
[6] Hu L Y, Fan H Y 2009 Chin. Phys. Lett. 26 090307
[7] Xu X X, Hu L Y, Guo Q, Fan H Y 2013 Chin. Phys. B 22 090302
[8] Hu L Y, Zhang Z M 2012 Chin. Opt. Lett. 10 082701
[9] Agarwal G S 1992 Phys. Rev. A 45 1787
[10] Fan H Y, Lou S Y, Pan X Y, Da C 2013 Acta. Phys. Sin. 62 240301(in Chinese) [范洪义, 楼森岳, 潘孝胤, 笪诚 2013 62 240301]
[11] Fan H Y, Klauder J R 1994 Phys. Rev. A 49 704
[12] Fan H Y, Zhan D H, Yu W J, Zhou J 2012 Acta. Phys. Sin. 61 110302(in Chinese) [范洪义, 展德会, 于文健, 周军 2012 61 110302]
[13] Fan H Y, Ruan T N 1983 Commun. Theor. Phys. 2 1563
[14] Fan H Y, Ruan T N 1984 Commun. Theor. Phys. 3 345
[15] Fan H Y, Fan Y 1997 Mod. Phys. Lett. A 12 2325
[16] Fan H Y, Zaidi H R 1987 Phys. Lett. A 124 303
计量
- 文章访问数: 6142
- PDF下载量: 172
- 被引次数: 0