-
In this paper, the propagation of a few-cycle femtosecond pulse in a nonlinear Kerr medium is studied by the method of time-transformation. The time-transformation approach can greatly improve the computational efficiency. Because the width of electric field of the few-cycle femtosecond pulse is less than the characteristic time of Raman response in a nonlinear medium, it is observed that the electric field of the pulse experiences a significant deformation and breaks into a Raman soliton and the dispersion waves during the propagation, which can be attributed to strongly nonlocal nonlinearity. A deeper investigation of the time-frequency distributions for both the Raman soliton and the dispersion waves is also included. Since the pulse contains only few cycles, the carrier-envelope phase (CEP) of the pulse plays an important role in the process of nonlinear propagation. The numerical results show the CEP-dependence in the process of nonlinear propagation: the phase changes for both the Raman soliton and the dispersive waves are just equal to the CEP change of the initial pulse, which indicates that the CEP of the pulse is linearly transmitted in the process of nonlinear propagation. This phenomenon can be attributed to the fact that the phase change due to the nonlinearity is only dependent on the intensities of the fields of both the Raman soliton and the dispersion wave, which are unchanged for all the CEPs.
[1] Nisoli M, de Silvestri S, Svelto O, Szipcs R, Ferencz K, Spielmann C, Sartania S, Krausz F 1997 Opt. Lett. 22 522
[2] Li P C, Zhou X X, Dong C Z, Zhao S F 2004 Acta Phys. Sin. 53 750 (in Chinese) [李鹏程, 周效信, 董晨钟, 赵松峰 2004 53 750]
[3] Li Q G, Chen H, Zhang X, Yi X N 2014 Chin. Phys. B 23 074206
[4] Chen Z J, Ye J M, Xu Y B 2015 Chin. Phys. B 24 103203
[5] Zhu J F, Du Q, Wang X L, Teng H, Han H N, Wei Z Y, Hou X 2008 Acta Phys. Sin. 57 7753 (in Chinese) [朱江峰, 杜强, 王向林, 滕浩, 韩海年, 魏志义, 侯洵 2008 57 7753]
[6] Zeng H, Wu J, Xu H, Wu K, Wu E 2004 Appl. Phys. B 79 837
[7] Zeng H, Wu J, Xu H, Wu K, Wu E 2004 Phys. Rev. Lett. 92 143903
[8] Zeng H, Wu J, Xu H, Wu K 2006 Phys. Rev. Lett. 96 083902
[9] Agrawal G P 2001 Nonlinear Fiber Opitcs (New York: Academic Press) pp30-55
[10] Liu S B, Liu S Q 2004 Chin. Phys. 13 1892
[11] Xiao Y, Agrawal G P, Maywal D N 2011 Opt. Lett. 36 505
[12] Xiao Y, Agrawal G P, Maywal D N 2012 Opt. Lett. 37 1271
[13] Xiao Y, Agrawal G P, Maywal D N 2012 J. Opt. Soc. Am. B 29 2958
[14] Xiao Y, Maywal D N, Agrawal G P 2013 Opt. Lett. 38 724
[15] Xiao Y, Maywal D N, Agrawal G P 2013 Phys. Rev. A 87 063816
[16] Lin Q, Agrawal G P 2006 Opt. Lett. 31 3086
[17] Thomas B, Ferenc K 1997 Phys. Rev. Lett. 78 3282
[18] Dudley J M, Genty G, Coen S 2006 Rev. Mod. Phys. 78 1135
[19] Husakou A V, Herrmann J 2001 Phys. Rev. Lett. 87 203901
[20] Akhmediev N, Karlsson M 1995 Phys. Rev. A 51 2602
[21] Headley C, Agrawal G P 1996 J. Opt. Soc. Am. B 13 2170
[22] Zhang X B, Luo X, Cheng L, Li H Q, Peng J G, Dai N L, Li J Y 2014 Acta Phys. Sin. 63 034204 (in Chinese) [张心贲, 罗兴, 程兰, 李海清, 彭景刚, 戴能利, 李进延 2014 63 034204]
[23] Herrmann J, Griebner U, Zhavoronkov N, Husakoul A, Nickell D, Knight J C, Wadsworth W J, Russell P S J, Korn G 2002 Phys. Rev. Lett. 88 173901
[24] Cristiani I, Tediosi R, Tartara L, Degiorgio V 2004 Opt. Express 12 124
[25] Skryabin D V, Yulin A V 2005 Phys. Rev. E 72 016619
[26] Chang G Q, Chen L J, Krtner F X 2010 Opt. Lett. 35 2361
-
[1] Nisoli M, de Silvestri S, Svelto O, Szipcs R, Ferencz K, Spielmann C, Sartania S, Krausz F 1997 Opt. Lett. 22 522
[2] Li P C, Zhou X X, Dong C Z, Zhao S F 2004 Acta Phys. Sin. 53 750 (in Chinese) [李鹏程, 周效信, 董晨钟, 赵松峰 2004 53 750]
[3] Li Q G, Chen H, Zhang X, Yi X N 2014 Chin. Phys. B 23 074206
[4] Chen Z J, Ye J M, Xu Y B 2015 Chin. Phys. B 24 103203
[5] Zhu J F, Du Q, Wang X L, Teng H, Han H N, Wei Z Y, Hou X 2008 Acta Phys. Sin. 57 7753 (in Chinese) [朱江峰, 杜强, 王向林, 滕浩, 韩海年, 魏志义, 侯洵 2008 57 7753]
[6] Zeng H, Wu J, Xu H, Wu K, Wu E 2004 Appl. Phys. B 79 837
[7] Zeng H, Wu J, Xu H, Wu K, Wu E 2004 Phys. Rev. Lett. 92 143903
[8] Zeng H, Wu J, Xu H, Wu K 2006 Phys. Rev. Lett. 96 083902
[9] Agrawal G P 2001 Nonlinear Fiber Opitcs (New York: Academic Press) pp30-55
[10] Liu S B, Liu S Q 2004 Chin. Phys. 13 1892
[11] Xiao Y, Agrawal G P, Maywal D N 2011 Opt. Lett. 36 505
[12] Xiao Y, Agrawal G P, Maywal D N 2012 Opt. Lett. 37 1271
[13] Xiao Y, Agrawal G P, Maywal D N 2012 J. Opt. Soc. Am. B 29 2958
[14] Xiao Y, Maywal D N, Agrawal G P 2013 Opt. Lett. 38 724
[15] Xiao Y, Maywal D N, Agrawal G P 2013 Phys. Rev. A 87 063816
[16] Lin Q, Agrawal G P 2006 Opt. Lett. 31 3086
[17] Thomas B, Ferenc K 1997 Phys. Rev. Lett. 78 3282
[18] Dudley J M, Genty G, Coen S 2006 Rev. Mod. Phys. 78 1135
[19] Husakou A V, Herrmann J 2001 Phys. Rev. Lett. 87 203901
[20] Akhmediev N, Karlsson M 1995 Phys. Rev. A 51 2602
[21] Headley C, Agrawal G P 1996 J. Opt. Soc. Am. B 13 2170
[22] Zhang X B, Luo X, Cheng L, Li H Q, Peng J G, Dai N L, Li J Y 2014 Acta Phys. Sin. 63 034204 (in Chinese) [张心贲, 罗兴, 程兰, 李海清, 彭景刚, 戴能利, 李进延 2014 63 034204]
[23] Herrmann J, Griebner U, Zhavoronkov N, Husakoul A, Nickell D, Knight J C, Wadsworth W J, Russell P S J, Korn G 2002 Phys. Rev. Lett. 88 173901
[24] Cristiani I, Tediosi R, Tartara L, Degiorgio V 2004 Opt. Express 12 124
[25] Skryabin D V, Yulin A V 2005 Phys. Rev. E 72 016619
[26] Chang G Q, Chen L J, Krtner F X 2010 Opt. Lett. 35 2361
Catalog
Metrics
- Abstract views: 6953
- PDF Downloads: 175
- Cited By: 0