Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High frequency characteristics of dielectric-loaded grating for terahertz Smith-Purcell radiation

Cao Miao-Miao Liu Wen-Xin Wang Yong Zhu Jue-Yuan Li Ke

Citation:

High frequency characteristics of dielectric-loaded grating for terahertz Smith-Purcell radiation

Cao Miao-Miao, Liu Wen-Xin, Wang Yong, Zhu Jue-Yuan, Li Ke
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The research on a Smith-Purcell device becomes active since it holds promise in developing a high power, tunable, and compact terahertz radiation source. In this paper, a dielectric loaded grating for Smith-Purcell device is proposed. By investigating the interaction between the sheet electron beam and surface wave above the grating, the dispersion equation with electron beam is derived, in which the electron beam has a finite thickness. And then the growth rate of the beam-wave interaction is numerically calculated from the dispersion equation. In addition, the current threshold for oscillators, known as a start current, is carefully estimated from the dispersion equation by considering the boundary conditions of electromagnetic field. The effects of structure length, electron beam parameters and dielectric constant on start current are analyzed at length. The results reveal that the start current decreases as the structure length increases. This is because as the structure length becomes greater, the distance of the beam-wave interaction becomes longer, which can strengthen the beam-wave interaction. And with increasing beam thickness and beam-grating distance, the start current increases. Because the electric field of the surface wave decreases exponentially with the increase of distance from the grating, the electron beam far from the grating cannot be bunched by the field, which makes it harder for Smith-Purcell device to oscillate. However, as the beam voltage becomes greater, the start current decreases first quickly and then slightly. Compared with the case of metal grating, it can be seen that the use of dielectric can improve the growth rate and reduce the start current for the operation of a Smith-Purcell backward wave oscillator. The start current decreases quickly when the dielectric constant is greater than 1. Then it increases slightly when dielectric constant is between 2 and 3, and finally the start current continues to decrease. But it cannot be helpful to choose a very big value of dielectric in order to obtain a low start current, because the operation frequency decreases as dielectric constant increases. It is more appropriate to choose a dielectric constant in a required frequency range. The predictions of our theory and the results from the particle-in-cell simulation are consistent with each other, which verifies the validity and accuracy of the theory in this paper.
      Corresponding author: Liu Wen-Xin, lwenxin@mail.ie.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10905032, 11275004), the National High Technology Research and Development Program of China (Grant No. 2012AA8122007A), and the Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences (Grant No. YYYJ-1123-5).
    [1]

    Smith S J, Purcell E M 1953 Phys. Rev. 92 4

    [2]

    Bakhtyari A, Walsh J E, Brownell J H 2002 Phys. Rev. E 65 066503

    [3]

    Urata J, Goldstein M, Kimmitt M F, Naumov A, Platt C, Walsh J E 1998 Phys. Rev. Lett. 80 516

    [4]

    Andrews H L, Boulware C H, Brau C A, Jarvis J D 2004 Phys. Rev. ST Accel. Beams 7 070701

    [5]

    Andrews H L, Boulware C H, Brau C A, Jarvis J D 2005 Phys. Rev. ST Accel. Beams 8 050703

    [6]

    Andrews H L, Boulware C H, Brau C A, Donohue J T, Gardelle J, Jarvis J D 2006 New J. Phys. 8 289

    [7]

    Kim K J, Kumar V 2007 Phys. Rev. ST Accel. Beams 10 080702

    [8]

    Li D Z, Hangyo M, Tsunawaki Y, Yang Z, Wei Y 2012 Appl. Phys. Lett. 100 191101

    [9]

    Doucas G, Kimmitt M F, Kormann T, Korschinek G, Wallner C 2003 Int. J. Infrared. Milli. Waves. 24 829

    [10]

    Xiong P F, Wang Y T 1996 High Power Laser and Particle Beams 8 1 (in Chinese) [熊平凡, 王友棠 1996 强激光与粒子束 8 1]

    [11]

    Lu Z G, Gong Y B, Wei Y Y, Wang W X 2007 Acta Phys. Sin. 56 6931 (in Chinese) [路志刚, 宫玉彬, 魏彦玉, 王文祥 2007 56 6931]

    [12]

    Zhang P, Zhang Y X, Zhou J, Liu W H, Zhong R B, Liu S G 2012 Chin. Phys. B 21 104102

    [13]

    Donohue J T, Gardelle J 2006 Phys. Rev. ST Accel. Beams 9 060701

    [14]

    Li D Z, Imasaki K, Gao X, Yang Z, Park G S 2007 Appl. Phys. Lett. 91 221506

    [15]

    Kumar V, Kim K J 2006 Phys. Rev. E 73 026501

    [16]

    Jarvis J D, Andrews H L, Brau C A 2010 Phys. Rev. ST Accel. Beams 13 020701

    [17]

    Liu W X, Yang Z Q, Liang Z, Li D Z, Imasaki K, Shi Z J, Lan F, Park G S 2007 Nucl. Instrum. Meth. Phys. Res. A 580 1552

    [18]

    Cao M M, Liu W X, Wang Y, Li K 2014 Acta Phys. Sin. 63 024101 (in Chinese) [曹苗苗, 刘文鑫, 王勇, 李科 2014 63 024101]

    [19]

    Di J, Zhu D J, Liu S G 2005 J. UEST China 34 4 (in Chinese) [狄隽, 祝大军, 刘盛纲 2005 电子科技大学学报 34 4]

    [20]

    Zhang K Q, Li D J 2001 Electromagnetic Theory for Microwaves and Optoelectronics (Beijing: Publishing House of Electronics Industry) p382 (in Chinese) [张克潜, 李德杰 2001 微波与光电子学中的电磁理论(北京:电子工业出版社) 第382页]

    [21]

    Yasumoto K, Tanaka T, Aramaki T 1990 IEEE Trans. Plasma Sci. 18 699

    [22]

    Mechrany K, Rshidaian B 2003 IEEE Trans. Electron Dev. 50 1562

    [23]

    Chang S F R, Scharer J E, Booske J H 1992 IEEE Trans. Plasma Sci. 20 293

    [24]

    Tan H Q, Tian S Q 2007 Fortran Language: Fortran 77 Structured Programming (Beijing: Tsinghua University Press) pp177-183 (in Chinese) [谭浩强, 田淑清 2007 Fortran语言: Fortran 77结构化程序设计(北京: 清华大学出版社) 第177183页]

    [25]

    Liu W X, Yang Z Q, Zhang Z C, Lan F, Shi Z J, Liang Z, Liu S G 2008 J. Infrared Millim. Waves 27 152 (in Chinese) [刘文鑫, 杨梓强, 张祖存, 兰峰, 史宗君, 梁正, 刘盛纲 2008 红外与毫米波学报 27 152]

  • [1]

    Smith S J, Purcell E M 1953 Phys. Rev. 92 4

    [2]

    Bakhtyari A, Walsh J E, Brownell J H 2002 Phys. Rev. E 65 066503

    [3]

    Urata J, Goldstein M, Kimmitt M F, Naumov A, Platt C, Walsh J E 1998 Phys. Rev. Lett. 80 516

    [4]

    Andrews H L, Boulware C H, Brau C A, Jarvis J D 2004 Phys. Rev. ST Accel. Beams 7 070701

    [5]

    Andrews H L, Boulware C H, Brau C A, Jarvis J D 2005 Phys. Rev. ST Accel. Beams 8 050703

    [6]

    Andrews H L, Boulware C H, Brau C A, Donohue J T, Gardelle J, Jarvis J D 2006 New J. Phys. 8 289

    [7]

    Kim K J, Kumar V 2007 Phys. Rev. ST Accel. Beams 10 080702

    [8]

    Li D Z, Hangyo M, Tsunawaki Y, Yang Z, Wei Y 2012 Appl. Phys. Lett. 100 191101

    [9]

    Doucas G, Kimmitt M F, Kormann T, Korschinek G, Wallner C 2003 Int. J. Infrared. Milli. Waves. 24 829

    [10]

    Xiong P F, Wang Y T 1996 High Power Laser and Particle Beams 8 1 (in Chinese) [熊平凡, 王友棠 1996 强激光与粒子束 8 1]

    [11]

    Lu Z G, Gong Y B, Wei Y Y, Wang W X 2007 Acta Phys. Sin. 56 6931 (in Chinese) [路志刚, 宫玉彬, 魏彦玉, 王文祥 2007 56 6931]

    [12]

    Zhang P, Zhang Y X, Zhou J, Liu W H, Zhong R B, Liu S G 2012 Chin. Phys. B 21 104102

    [13]

    Donohue J T, Gardelle J 2006 Phys. Rev. ST Accel. Beams 9 060701

    [14]

    Li D Z, Imasaki K, Gao X, Yang Z, Park G S 2007 Appl. Phys. Lett. 91 221506

    [15]

    Kumar V, Kim K J 2006 Phys. Rev. E 73 026501

    [16]

    Jarvis J D, Andrews H L, Brau C A 2010 Phys. Rev. ST Accel. Beams 13 020701

    [17]

    Liu W X, Yang Z Q, Liang Z, Li D Z, Imasaki K, Shi Z J, Lan F, Park G S 2007 Nucl. Instrum. Meth. Phys. Res. A 580 1552

    [18]

    Cao M M, Liu W X, Wang Y, Li K 2014 Acta Phys. Sin. 63 024101 (in Chinese) [曹苗苗, 刘文鑫, 王勇, 李科 2014 63 024101]

    [19]

    Di J, Zhu D J, Liu S G 2005 J. UEST China 34 4 (in Chinese) [狄隽, 祝大军, 刘盛纲 2005 电子科技大学学报 34 4]

    [20]

    Zhang K Q, Li D J 2001 Electromagnetic Theory for Microwaves and Optoelectronics (Beijing: Publishing House of Electronics Industry) p382 (in Chinese) [张克潜, 李德杰 2001 微波与光电子学中的电磁理论(北京:电子工业出版社) 第382页]

    [21]

    Yasumoto K, Tanaka T, Aramaki T 1990 IEEE Trans. Plasma Sci. 18 699

    [22]

    Mechrany K, Rshidaian B 2003 IEEE Trans. Electron Dev. 50 1562

    [23]

    Chang S F R, Scharer J E, Booske J H 1992 IEEE Trans. Plasma Sci. 20 293

    [24]

    Tan H Q, Tian S Q 2007 Fortran Language: Fortran 77 Structured Programming (Beijing: Tsinghua University Press) pp177-183 (in Chinese) [谭浩强, 田淑清 2007 Fortran语言: Fortran 77结构化程序设计(北京: 清华大学出版社) 第177183页]

    [25]

    Liu W X, Yang Z Q, Zhang Z C, Lan F, Shi Z J, Liang Z, Liu S G 2008 J. Infrared Millim. Waves 27 152 (in Chinese) [刘文鑫, 杨梓强, 张祖存, 兰峰, 史宗君, 梁正, 刘盛纲 2008 红外与毫米波学报 27 152]

  • [1] Fu Tao, Yang Zi-Qiang, Ouyang Zheng-Biao. Dispersion properties of plasma-filled metallic photonic crystal slow-wave structure. Acta Physica Sinica, 2015, 64(17): 174205. doi: 10.7498/aps.64.174205
    [2] Cao Miao-Miao, Liu Wen-Xin, Wang Yong, Li Ke. Dispersion characteristics of dielectric loaded metal grating. Acta Physica Sinica, 2014, 63(2): 024101. doi: 10.7498/aps.63.024101
    [3] He Fang-Ming, Luo Ji-Run, Zhu Min, Guo Wei. Analysis of the dispersion and interaction impedance for a coupled cavity slow wave structure with double in-line slots in TWT. Acta Physica Sinica, 2013, 62(17): 174101. doi: 10.7498/aps.62.174101
    [4] Zhang Kai-Chun, Wu Zhen-Hua. Study of extended interaction oscillator with folded waveguide in sub-terahertz band. Acta Physica Sinica, 2013, 62(2): 024103. doi: 10.7498/aps.62.024103
    [5] Chen Ye, Zhao Ding, Wang Yong. Study on the interaction between a sheet electron beam and the slow-wave structure for dielectric-loaded rectangular Cerenkov maser. Acta Physica Sinica, 2012, 61(9): 094102. doi: 10.7498/aps.61.094102
    [6] Mo Jia-Qi, Chen Xian-Feng. Approximate solution of solitary wave for a class of generalized nonlinear disturbed dispersive equation. Acta Physica Sinica, 2010, 59(3): 1403-1408. doi: 10.7498/aps.59.1403
    [7] Han Yong, Liu Yan-Wen, Ding Yao-Gen, Liu Pu-Kun. Study on the thermal interface resistance of the helix slow-wave structure. Acta Physica Sinica, 2009, 58(3): 1806-1811. doi: 10.7498/aps.58.1806
    [8] Yin Jiu-Li, Tian Li-Xin. New exotic solitary waves in one type of nonlinear dispersive equations. Acta Physica Sinica, 2009, 58(6): 3632-3636. doi: 10.7498/aps.58.3632
    [9] Yang Rui, Xie Yong-Jun, Wang Yuan-Yuan, Fu Huan-Zhan. Slow wave propagation in metamaterial based nonradiative dielectric waveguides and its application. Acta Physica Sinica, 2008, 57(9): 5513-5518. doi: 10.7498/aps.57.5513
    [10] Dispersion analysis of a coupled-cavity slow wave structure filled with plasma. Acta Physica Sinica, 2007, 56(12): 7138-7146. doi: 10.7498/aps.56.7138
    [11] Xie Hong-Quan, Liu Pu-Kun. Dispersion equation of a tape helix slow wave structure filled with plasma. Acta Physica Sinica, 2006, 55(7): 3514-3518. doi: 10.7498/aps.55.3514
    [12] Jiao Chong-Qing, Luo Ji-Run. Propagation of electromagnetic wave in a lossy cylindrical waveguide. Acta Physica Sinica, 2006, 55(12): 6360-6367. doi: 10.7498/aps.55.6360
    [13] Xie Hong-Quan, Liu Pu-Kun. Dispersion equation of a helical slow wave structure filled with magnetized plasma. Acta Physica Sinica, 2006, 55(5): 2397-2402. doi: 10.7498/aps.55.2397
    [14] Yue Ling-Na, Wang Wen-Xiang, Wei Yan-Yu, Gong Yu-Bin. The dispersion characteristics of the coaxial arbitrary-shaped-groove periodic slow-wave structure. Acta Physica Sinica, 2005, 54(9): 4223-4228. doi: 10.7498/aps.54.4223
    [15] Chen Yan-Ping, Wang Chuan-Bing, Zhou Guo-Cheng. Maser instability driven by an electron beam with losscone-beam distribution. Acta Physica Sinica, 2005, 54(7): 3221-3227. doi: 10.7498/aps.54.3221
    [16] Chen Yan-Ping, Zhou Guo-Cheng. Further numerical study of a maser instability driven by an electron beam. Acta Physica Sinica, 2004, 53(10): 3398-3403. doi: 10.7498/aps.53.3398
    [17] Chen Yan-Ping, Zhou Guo-Cheng, Wu Ching-Sheng. A maser instability driven by an electron beam. Acta Physica Sinica, 2003, 52(2): 421-427. doi: 10.7498/aps.52.421
    [18] Ye Wen-Hua, Zhang Wei-Yan, He Xian-Shi. . Acta Physica Sinica, 2000, 49(4): 762-767. doi: 10.7498/aps.49.762
    [19] HU WEN-ZHONG. THE UNIVERSAL DISPERSION EQUATIONS OF MSFVW AND MSBVW IN ARBITRARY MULTILAYER MAGNETIC STRUCTURE. Acta Physica Sinica, 1989, 38(3): 449-457. doi: 10.7498/aps.38.449
    [20] ZHANG CHENG-FU. ON THE RENORMALIZED DISPERSION EQUATION OF TURBULENT PLASMA. Acta Physica Sinica, 1986, 35(3): 300-310. doi: 10.7498/aps.35.300
Metrics
  • Abstract views:  7068
  • PDF Downloads:  236
  • Cited By: 0
Publishing process
  • Received Date:  12 August 2015
  • Accepted Date:  12 September 2015
  • Published Online:  05 January 2016

/

返回文章
返回
Baidu
map