搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

随机电磁高阶Bessel-Gaussian光束在海洋湍流中的传输特性

刘永欣 陈子阳 蒲继雄

引用本文:
Citation:

随机电磁高阶Bessel-Gaussian光束在海洋湍流中的传输特性

刘永欣, 陈子阳, 蒲继雄

Propagation of stochastic electromagnetic high-order Bessel-Gaussian beams in the oceanic turbulence

Liu Yong-Xin, Chen Zi-Yang, Pu Ji-Xiong
PDF
导出引用
  • 利用广义惠更斯-菲涅耳衍射积分公式得到了随机电磁高阶Bessel-Gaussian光束在海洋湍流中传输的交叉谱密度矩阵的一般表达式,通过数值计算主要研究了随机电磁高阶Bessel-Gaussian光束在海洋湍流中传输时其在远场输出面的统计特性的变化,包括归一化光谱强度、光谱偏振度、两点的光谱相干度等.数值模拟结果显示海洋湍流能够对随机电磁高阶Bessel-Gaussian光束的归一化光谱强度分布产生影响,随着传输距离的增加,零阶Bessel-Gaussian光束中心出现凹陷,高阶Bessel-Gaussian光束中心会变平坦继而又凹陷下去,不管零阶还是高阶,当传输距离增加到足够远,光强分布都会演变成最终的类高斯分布.x轴上各点的偏振度改变与相干长度xx,yy以及海洋湍流参数有关.x轴上任意一点和原点这两点的光谱相干度也随x的增加而呈振荡变化,并且海洋的均方温度耗散率T对光谱相干度有影响.
    Recently, the laser beam propagation in the oceanic turbulence has become a hot research topic. In addition to the characteristics of free diffraction and self-reconstruction, the high-order Bessel-Gaussian beam is a kind of typical vortex beam because of the existence of a spiral phase factor with orbital angular momentum. Researchers have investigated the self-reconstruction property of the high-order Bessel-Gaussian beams in the free space, also carried out intensive researches on the transmission characteristics of high-order Bessel-Gaussian beam in the ABCD optical system and in the atmospheric turbulence. However, to the best of our knowledge, to date there has been no investigation on the propagation of this laser beam in the oceanic turbulence. In this paper, we will study the propagation characteristics of the random electromagnetic high-order Bessel-Gaussian beams in the oceanic turbulence, and discuss the variation of the normalized spectrum intensity, the spectral degree of polarization, and the spectral degree of coherence. By using the extended Huygens-Fresnel diffraction integral formula, the general expression for the cross spectral density matrix of the stochastic electromagnetic high-order Bessel-Gaussian beams propagating in the oceanic turbulence is obtained, and the statistical properties of the random electromagnetic high-order Bessel-Gaussian beams propagating in the seawater are investigated by numerical calculation. The numerical results show that the oceanic turbulence can affect the normalized spectral intensity distribution of the random electromagnetic beam. With the increase of the transmission distance, the center of the zero-order Bessel-Gaussian beam becomes depressed, and the center of the higher-order Bessel-Gaussian beam will become flat and then depressed. As the transmission distance increases far enough, regardless of the zero-order or higher-order, the intensity distribution will eventually evolve into the quasi Gaussian shaped distribution. The variation of the degree of polarization of each point on the x axis is related to the coherence length (xx,yy) and the oceanic turbulence parameters. The spectral coherence of the origin and any point on the x axis also changes with the increase of x, and the rate of dissipation of mean-square temperature T has influence on the spectral coherence. This research is of great value for applying the high-order Bessel-Gaussian beam to the optical communication, optical imaging and underwater exploration in the ocean.
      通信作者: 蒲继雄, jixiong@hqu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61505059,61575070,11504116)、福建省教育厅科技项目(批准号:JA15038)和华侨大学高层次人才启动经费(批准号:12BS231)资助的课题.
      Corresponding author: Pu Ji-Xiong, jixiong@hqu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61505059, 61575070, 11504116), the Project of Education Department of Fujian Province, China (Grant No. JA15038), and the High level talent research of Huaqiao University, China (Grant No. 12BS231).
    [1]

    Korotkova O, Farwell N 2011 Opt. Commun. 284 1740

    [2]

    Shchepakina E, Farwell N, Korotkova O 2011 Appl. Phys. B 105 415

    [3]

    Farwell N, Korotkova O 2012 Opt. Commun. 285 872

    [4]

    Fu W Y, Zhang H M 2013 Opt. Commun. 304 11

    [5]

    Fu W Y, Zhang H M, Zheng X R 2015 Chin. J. Lasers 42 s113002 (in Chinese) [付文羽, 张汉谋, 郑兴荣 2015 中国激光 42 s113002]

    [6]

    Tang M M, Zhao D M 2013 Appl. Phys. B 111 665

    [7]

    Xu J, Tang M M, Zhao D M 2014 Opt. Commun. 331 1

    [8]

    Xu J, Zhao D M 2014 Opt. Laser Technol. 57 189

    [9]

    Tang M M, Zhao D M 2014 Opt. Commun. 312 89

    [10]

    Zhu W T, Tang M M, Zhao D M 2016 Optik 127 3775

    [11]

    Lu L, Ji X L, Li X Q, Deng J P, Chen H, Yang T 2014 Optik 125 7154

    [12]

    Yang T, Ji X L, Li X Q 2015 Acta Phys. Sin. 64 024206 (in Chinese) [杨婷, 季小玲, 李晓庆 2015 64 024206]

    [13]

    Huang Y P, Huang P, Wang F, Zhao G, Zeng A 2015 Opt. Commun. 336 146

    [14]

    Liu D J, Wang Y C, Wang G Q, Yin H M, Wang J R 2016 Opt. Laser Technol. 82 76

    [15]

    Liu D J, Chen L, Wang Y C, Wang G Q, Yin H M 2016 Optik 127 6961

    [16]

    Liu D J, Wang Y R, Yin H M 2015 Appl. Opt. 54 10510

    [17]

    Zhang Q A, Wu F T, Zheng W T, Pu J X 2011 Sci. Sin.: Phys. Mech. Astron. 41 1131 (in Chinese) [张前安, 吴逢铁, 郑维涛, 蒲继雄 2011 中国科学: 物理学 力学 天文学 41 1131]

    [18]

    Chen B S, Chen Z Y, Pu J X 2008 Opt. Laser Technol. 40 820

    [19]

    Chen Z Y, Cui S W, Zhang L, Sun C Z, Xiong M S, Pu J X 2014 Opt. Express 22 18278

    [20]

    Zhao C L, Wang L G, Lu X H, Chen H 2007 Opt. Laser Technol. 39 1199

    [21]

    Eyyuboglu H T 2007 Appl. Phys. B 88 259

    [22]

    Nikishov V V, Nikishov V I 2000 Int. J. Fluid Mech. Res. 27 82

  • [1]

    Korotkova O, Farwell N 2011 Opt. Commun. 284 1740

    [2]

    Shchepakina E, Farwell N, Korotkova O 2011 Appl. Phys. B 105 415

    [3]

    Farwell N, Korotkova O 2012 Opt. Commun. 285 872

    [4]

    Fu W Y, Zhang H M 2013 Opt. Commun. 304 11

    [5]

    Fu W Y, Zhang H M, Zheng X R 2015 Chin. J. Lasers 42 s113002 (in Chinese) [付文羽, 张汉谋, 郑兴荣 2015 中国激光 42 s113002]

    [6]

    Tang M M, Zhao D M 2013 Appl. Phys. B 111 665

    [7]

    Xu J, Tang M M, Zhao D M 2014 Opt. Commun. 331 1

    [8]

    Xu J, Zhao D M 2014 Opt. Laser Technol. 57 189

    [9]

    Tang M M, Zhao D M 2014 Opt. Commun. 312 89

    [10]

    Zhu W T, Tang M M, Zhao D M 2016 Optik 127 3775

    [11]

    Lu L, Ji X L, Li X Q, Deng J P, Chen H, Yang T 2014 Optik 125 7154

    [12]

    Yang T, Ji X L, Li X Q 2015 Acta Phys. Sin. 64 024206 (in Chinese) [杨婷, 季小玲, 李晓庆 2015 64 024206]

    [13]

    Huang Y P, Huang P, Wang F, Zhao G, Zeng A 2015 Opt. Commun. 336 146

    [14]

    Liu D J, Wang Y C, Wang G Q, Yin H M, Wang J R 2016 Opt. Laser Technol. 82 76

    [15]

    Liu D J, Chen L, Wang Y C, Wang G Q, Yin H M 2016 Optik 127 6961

    [16]

    Liu D J, Wang Y R, Yin H M 2015 Appl. Opt. 54 10510

    [17]

    Zhang Q A, Wu F T, Zheng W T, Pu J X 2011 Sci. Sin.: Phys. Mech. Astron. 41 1131 (in Chinese) [张前安, 吴逢铁, 郑维涛, 蒲继雄 2011 中国科学: 物理学 力学 天文学 41 1131]

    [18]

    Chen B S, Chen Z Y, Pu J X 2008 Opt. Laser Technol. 40 820

    [19]

    Chen Z Y, Cui S W, Zhang L, Sun C Z, Xiong M S, Pu J X 2014 Opt. Express 22 18278

    [20]

    Zhao C L, Wang L G, Lu X H, Chen H 2007 Opt. Laser Technol. 39 1199

    [21]

    Eyyuboglu H T 2007 Appl. Phys. B 88 259

    [22]

    Nikishov V V, Nikishov V I 2000 Int. J. Fluid Mech. Res. 27 82

  • [1] 袁鹏举, 杨蕴哲, 董世杰, 唐苗苗. 镜像与反镜像扭曲高斯谢尔模光束的传输特性.  , 2024, 73(21): 214201. doi: 10.7498/aps.73.20241023
    [2] 刘瑞熙, 马磊. 海洋湍流对光子轨道角动量量子通信的影响.  , 2022, 71(1): 010304. doi: 10.7498/aps.71.20211146
    [3] 郭良浩, 王少萌, 杨利霞, 王凯程, 马佳路, 周俊, 宫玉彬. 太赫兹波在神经细胞中传输的弱谐振效应.  , 2021, 70(24): 240301. doi: 10.7498/aps.70.20211677
    [4] 吴彤, 季小玲, 罗燏娟. 海洋湍流中自适应光学成像系统特征参量研究.  , 2018, 67(5): 054206. doi: 10.7498/aps.67.20171851
    [5] 吴彤, 季小玲, 李晓庆, 王欢, 邓宇, 丁洲林. 海洋湍流中光波特征参量和短期光束扩展的研究.  , 2018, 67(22): 224206. doi: 10.7498/aps.67.20181033
    [6] 尹霄丽, 郭翊麟, 闫浩, 崔小舟, 常欢, 田清华, 吴国华, 张琦, 刘博, 忻向军. 汉克-贝塞尔光束在海洋湍流信道中的螺旋相位谱分析.  , 2018, 67(11): 114201. doi: 10.7498/aps.67.20180155
    [7] 昌成成, 蒲继雄, 陈子阳, 陈旭东. 非均匀关联随机电磁光束的产生.  , 2017, 66(5): 054212. doi: 10.7498/aps.66.054212
    [8] 郑尚彬, 唐碧华, 姜云海, 高曾辉, 罗亚梅. 随机电磁光束经像散透镜后磁场的光谱Stokes奇点.  , 2016, 65(23): 234201. doi: 10.7498/aps.65.234201
    [9] 杨婷, 季小玲, 李晓庆. 部分相干环状偏心光束通过海洋湍流的传输特性.  , 2015, 64(20): 204206. doi: 10.7498/aps.64.204206
    [10] 李成强, 王挺峰, 张合勇, 谢京江, 刘立生, 郭劲. 光源参数及大气湍流对电磁光束传输偏振特性的影响.  , 2014, 63(10): 104201. doi: 10.7498/aps.63.104201
    [11] 丁攀峰, 蒲继雄. 部分相干涡旋光束传输中的光斑分析.  , 2012, 61(17): 174201. doi: 10.7498/aps.61.174201
    [12] 于永江, 陈建农, 闫金良, 王菲菲. 聚焦径向调制Bessel-Gaussian光束实现亚波长尺寸纵向偏振光束.  , 2011, 60(4): 044205. doi: 10.7498/aps.60.044205
    [13] 阮存军, 王树忠, 韩莹, 李庆生. 高传输通过率带状电子注聚焦与传输特性的研究.  , 2011, 60(8): 084105. doi: 10.7498/aps.60.084105
    [14] 黄永超, 张廷蓉, 陈森会, 宋宏远, 李艳桃, 张伟林. 椭圆高斯光束在单轴晶体中垂直于光轴的传输特性.  , 2011, 60(7): 074212. doi: 10.7498/aps.60.074212
    [15] 丁攀峰, 蒲继雄. 拉盖尔高斯涡旋光束的传输.  , 2011, 60(9): 094204. doi: 10.7498/aps.60.094204
    [16] 杜广星, 钱宝良. 准矩形截面强流相对论带状电子束的传输.  , 2010, 59(7): 4626-4633. doi: 10.7498/aps.59.4626
    [17] 梁林云, 戴松元, 方霞琴, 胡林华. 染料敏化太阳电池中TiO2膜内电子传输和背反应特性研究.  , 2008, 57(3): 1956-1962. doi: 10.7498/aps.57.1956
    [18] 颜森林. 混沌信号在光纤传输过程中的非线性演化.  , 2007, 56(4): 1994-2004. doi: 10.7498/aps.56.1994
    [19] 殷建玲, 刘承宜, 杨友源, 刘 江, 范广涵. 原子激光传输的有效ABCD形式研究.  , 2004, 53(2): 356-361. doi: 10.7498/aps.53.356
    [20] 苏纬仪, 杨 涓, 魏 昆, 毛根旺, 何洪庆. 金属平板前等离子体的电磁波功率反射系数计算分析.  , 2003, 52(12): 3102-3107. doi: 10.7498/aps.52.3102
计量
  • 文章访问数:  6019
  • PDF下载量:  265
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-14
  • 修回日期:  2017-03-14
  • 刊出日期:  2017-06-05

/

返回文章
返回
Baidu
map