Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Molecular dynamics simulation of the thermophysical properties and phase change behaviors of aluminum nanoparticles

Lin Chang-Peng Liu Xin-Jian Rao Zhong-Hao

Citation:

Molecular dynamics simulation of the thermophysical properties and phase change behaviors of aluminum nanoparticles

Lin Chang-Peng, Liu Xin-Jian, Rao Zhong-Hao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • With the development of energy storage technology, phase change materials which can be used to store thermal energy have received much attention in recent years. The nano-metallic materials are universally used as phase change materials due to their many desirable thermophysical properites. In this paper, the molecular dynamics simulation method is adopted to simulate the variations of melting point, density and phonon thermal conductivity of the nano aluminum with grain size ranging from 0.8 nm to 3.2 nm. The variations of density, specific heat capacity and phonon thermal conductivity with temperature of aluminum nanoparticles at a grain size of 1.6 nm are also studied. By using the embedded-atom potential, the thermophysical properties and phase change behaviors of aluminum nanoparticles are stimulated. The phase transition temperature of aluminum nanoparticles is studied based on the energy-temperature curve and the specific heat capacity-temperature curve. The surface energy theory and the size effect theory are applied to the analysis of the variation of the melting point of the aluminum nanoparticles, and the results show that the melting point increases as grain size augments, and it increases slowly when its grain size is between 2.2 nm and 3.2 nm but still holds the trend of increase. In order to obtain accurate thermal conductivity, the Green-Kubo method is adopted to calculate the phonon thermal conductivity of aluminum nanoparticle. As the grain size of aluminum nanoparticles increases, its density monotonically decreases, and the thermal conductivity monotonically increases linearly, which is in line with the theory of phonon. Similarly, with the increase of temperature, the density and thermal conductivity of aluminum nanoparticles of 1.6 nm in grain size both decrease. Moreover, the density of aluminum nanoparticle is generally lower than that of its bulk material. The study also shows that the heat transfer manner of aluminum nanoparticle is based on ballistic-diffusive heat conduction instead of the traditional diffusive heat conduction when it is in a nanoscale. The simulation studies the thermophysical properties of nanoparticles from the atomic perspective, and is of significance for guiding the design of the phase change materials based on the aluminum nanoparticles for thermal energy storage.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. U1407125) and the Young Scientists Fund of the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20140190).
    [1]

    Ge H, Li H, Mei S, Liu J 2013 Renew Sust. Energy Rev. 21 331

    [2]

    Farid M M, Khudhair A M, Razack S A K, Al-Hallaj S 2004 Energy Conv. Mange. 45 1597

    [3]

    Farkas D, Birchenall C E 1985 Metall Trans. A 16A 323

    [4]

    Birchenall C E, Riechman A F 1980 Metall Trans. A 11A 1415

    [5]

    Gleiter H 2000 Acta Mater. 48 1

    [6]

    Lewis L J, Jensen P, Barrat J L 1997 Phys. Rev. B 56 2248

    [7]

    Valkealahti S, Manninen M 1997 J. Phys.: Condens. Matter 9 4041

    [8]

    Sankar N, Mathew N, Sobhan C B 2008 Int. Commun. Heat Mass Trans. 35 867

    [9]

    Lewis L J, Jensen P, Combe N, Barrat J L 2000 Phys. Rev. B 61 16084

    [10]

    Taherkhania F, Akbarzadeh H, Abroshan H, Fortunelli A 2012 Fluid Phase Equilibr. 335 26

    [11]

    Yoshikawa T, Morita K 2003 J. Electrochem. Soc. 150 G465

    [12]

    Mench M M, Kuo K K, Yeh C L, Lu Y C 1998 Combust. Sci. Technol. 135 269

    [13]

    DeSena J T, Kuo K K 1999 J. Propul. Power 15 794

    [14]

    Mettawee E B S, Assassa G M R 2007 Sol. Energy 81 839

    [15]

    Levchenko E V, Evteev A V, Löwisch G G, Belova I V, Murch G E 2012 Intermetallics 22 193

    [16]

    Puri P, Yang V 2007 J. Phys. Chem. C 111 11776

    [17]

    Daw M S, Baskes M I 1984 Phys. Rev. B 29 6443

    [18]

    Mendelev M I, Han S, Srolovitz D J, Ackland G J, Sun D Y, Asta M 2003 Philos. Mag. 83 3977

    [19]

    Zhou X W, Wadley H N G, Johnson R A, Larson D J, Tabat N, Cerezo A, Petford-long A K, Smith G D W, Clifton P H, Martens R L, Kelly T F 2001 Acta Mater. 49 4005

    [20]

    Foiles S M, Baskes M I, Daw M S 1986 Phys. Rev. B 33 7983

    [21]

    Feng D L, Feng Y H, Zhang X X 2013 Acta Phys. Sin. 62 083602 (in Chinese) [冯黛丽, 冯妍卉, 张欣欣 2013 62 083602]

    [22]

    Schelling P K, Phillpot S R, Keblinski P 2002 Phys. Rev. B 65 144306

    [23]

    Alavi S, Thompson D L 2006 J. Phys. Chem. A 110 1518

    [24]

    Lai S L, Carlsson J R A, Allen L H 1998 Appl. Phys. Lett. 72 1098

    [25]

    Sun J, Simon S L 2007 Thermochim. Acta 463 32

    [26]

    Huang C L, Feng Y H, Zhang X X, Li J, Wang G, Chou A H 2013 Acta Phys. Sin. 62 026501 (in Chinese) [黄丛亮, 冯妍卉, 张欣欣, 李静, 王戈, 侴爱辉 2013 62 026501]

    [27]

    Yuan S P, Jiang P X 2004 Int. J. Thermophys. 27 581

    [28]

    Hua Y C, Cao B Y 2014 Int. J. Heat Mass Transfer 78 755

    [29]

    Hua Y C, Dong Y, Cao B Y 2013 Acta Phys. Sin. 62 244401 (in Chinese) [华钰超, 董源, 曹炳阳 2013 62 244401]

  • [1]

    Ge H, Li H, Mei S, Liu J 2013 Renew Sust. Energy Rev. 21 331

    [2]

    Farid M M, Khudhair A M, Razack S A K, Al-Hallaj S 2004 Energy Conv. Mange. 45 1597

    [3]

    Farkas D, Birchenall C E 1985 Metall Trans. A 16A 323

    [4]

    Birchenall C E, Riechman A F 1980 Metall Trans. A 11A 1415

    [5]

    Gleiter H 2000 Acta Mater. 48 1

    [6]

    Lewis L J, Jensen P, Barrat J L 1997 Phys. Rev. B 56 2248

    [7]

    Valkealahti S, Manninen M 1997 J. Phys.: Condens. Matter 9 4041

    [8]

    Sankar N, Mathew N, Sobhan C B 2008 Int. Commun. Heat Mass Trans. 35 867

    [9]

    Lewis L J, Jensen P, Combe N, Barrat J L 2000 Phys. Rev. B 61 16084

    [10]

    Taherkhania F, Akbarzadeh H, Abroshan H, Fortunelli A 2012 Fluid Phase Equilibr. 335 26

    [11]

    Yoshikawa T, Morita K 2003 J. Electrochem. Soc. 150 G465

    [12]

    Mench M M, Kuo K K, Yeh C L, Lu Y C 1998 Combust. Sci. Technol. 135 269

    [13]

    DeSena J T, Kuo K K 1999 J. Propul. Power 15 794

    [14]

    Mettawee E B S, Assassa G M R 2007 Sol. Energy 81 839

    [15]

    Levchenko E V, Evteev A V, Löwisch G G, Belova I V, Murch G E 2012 Intermetallics 22 193

    [16]

    Puri P, Yang V 2007 J. Phys. Chem. C 111 11776

    [17]

    Daw M S, Baskes M I 1984 Phys. Rev. B 29 6443

    [18]

    Mendelev M I, Han S, Srolovitz D J, Ackland G J, Sun D Y, Asta M 2003 Philos. Mag. 83 3977

    [19]

    Zhou X W, Wadley H N G, Johnson R A, Larson D J, Tabat N, Cerezo A, Petford-long A K, Smith G D W, Clifton P H, Martens R L, Kelly T F 2001 Acta Mater. 49 4005

    [20]

    Foiles S M, Baskes M I, Daw M S 1986 Phys. Rev. B 33 7983

    [21]

    Feng D L, Feng Y H, Zhang X X 2013 Acta Phys. Sin. 62 083602 (in Chinese) [冯黛丽, 冯妍卉, 张欣欣 2013 62 083602]

    [22]

    Schelling P K, Phillpot S R, Keblinski P 2002 Phys. Rev. B 65 144306

    [23]

    Alavi S, Thompson D L 2006 J. Phys. Chem. A 110 1518

    [24]

    Lai S L, Carlsson J R A, Allen L H 1998 Appl. Phys. Lett. 72 1098

    [25]

    Sun J, Simon S L 2007 Thermochim. Acta 463 32

    [26]

    Huang C L, Feng Y H, Zhang X X, Li J, Wang G, Chou A H 2013 Acta Phys. Sin. 62 026501 (in Chinese) [黄丛亮, 冯妍卉, 张欣欣, 李静, 王戈, 侴爱辉 2013 62 026501]

    [27]

    Yuan S P, Jiang P X 2004 Int. J. Thermophys. 27 581

    [28]

    Hua Y C, Cao B Y 2014 Int. J. Heat Mass Transfer 78 755

    [29]

    Hua Y C, Dong Y, Cao B Y 2013 Acta Phys. Sin. 62 244401 (in Chinese) [华钰超, 董源, 曹炳阳 2013 62 244401]

  • [1] Kuang Dan, Xu Shuang, Shi Da-Wei, Guo Jian, Yu Zhi-Nong. High performance amorphous Ga2O3 thin film solar blind ultraviolet photodetectors decorated with Al nanoparticles. Acta Physica Sinica, 2023, 72(3): 038501. doi: 10.7498/aps.72.20221476
    [2] Yang Quan, Ma Li, Geng Song-Chao, Lin Yi-Ni, Chen Tao, Sun Li-Ning. Molecular dynamics simulation of contact behaviors between multiwall carbon nanotube and metal surface. Acta Physica Sinica, 2021, 70(10): 106101. doi: 10.7498/aps.70.20202194
    [3] Li Jing, Li Shao-Wei, Cai Di, Liao Yan-Ning. The study of thermophysical properties of graphene aerogel composite phase change materials. Acta Physica Sinica, 2021, 70(4): 040503. doi: 10.7498/aps.70.20201499
    [4] Diwu Min-Jie, Hu Xiao-Mian. Molecular dynamics simulation of shock-induced isostructural phase transition in single crystal Ce. Acta Physica Sinica, 2020, 69(11): 116202. doi: 10.7498/aps.69.20200323
    [5] Cai Di, Li Jing, Jiao Nai-Xun. Preparation and thermophysical properties of graphene nanoplatelets-octadecane phase change composite materials. Acta Physica Sinica, 2019, 68(10): 100502. doi: 10.7498/aps.68.20182068
    [6] Li Jie-Jie, Lu Bin-Bin, Xian Yue-Hui, Hu Guo-Ming, Xia Re. Characterization of nanoporous silver mechanical properties by molecular dynamics simulation. Acta Physica Sinica, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [7] Zhang Bao-Ling, Song Xiao-Yong, Hou Qing, Wang Jun. Molecular dynamics study on the phase transition of high density helium. Acta Physica Sinica, 2015, 64(1): 016202. doi: 10.7498/aps.64.016202
    [8] Rao Zhong-Hao, Wang Shuang-Feng, Zhang Yan-Lai, Peng Fei-Fei, Cai Song-Heng. Molecular dynamics simulation of the thermophysical properties of phase change material. Acta Physica Sinica, 2013, 62(5): 056601. doi: 10.7498/aps.62.056601
    [9] Chen Min. Molecular dynamics study of small helium cluster diffusion in titanium. Acta Physica Sinica, 2011, 60(12): 126602. doi: 10.7498/aps.60.126602
    [10] Wang Zhi-Gang, Wu Liang, Zhang Yang, Wen Yu-Hua. Phase transition and coalescence behavior of fcc Fe nanoparticles: a molecular dynamics study. Acta Physica Sinica, 2011, 60(9): 096105. doi: 10.7498/aps.60.096105
    [11] Ma Wen, Zhu Wen-Jun, Zhang Ya-Lin, Chen Kai-Guo, Deng Xiao-Liang, Jing Fu-Qian. Construction of metallic nanocrystalline samples by molecular dynamics simulation. Acta Physica Sinica, 2010, 59(7): 4781-4787. doi: 10.7498/aps.59.4781
    [12] Chen Kai-Guo, Zhu Wen-Jun, Ma Wen, Deng Xiao-Liang, He Hong-Liang, Jing Fu-Qian. Propagation of shockwave in nanocrystalline copper: Molecular dynamics simulation. Acta Physica Sinica, 2010, 59(2): 1225-1232. doi: 10.7498/aps.59.1225
    [13] Zhou Zong-Rong, Wang Yu, Xia Yuan-Ming. Molecular dynamics study of deformation mechanism of γ-TiAl intermetallics. Acta Physica Sinica, 2007, 56(3): 1526-1531. doi: 10.7498/aps.56.1526
    [14] Liu Hao, Ke Fu-Jiu, Pan Hui, Zhou Min. Molecular dynamics simulation of the diffusion bonding and tensile behavior of a Cu-Al interface. Acta Physica Sinica, 2007, 56(1): 407-412. doi: 10.7498/aps.56.407
    [15] Shao Jian-Li, Wang Pei, Qin Cheng-Sen, Zhou Hong-Qiang. Shock-induced phase transformations of iron studied with molecular dynamics. Acta Physica Sinica, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [16] Zhou Guo-Rong, Gao Qiu-Ming. Freezing of Ni nanowires investigated by molecular dynamics simulation. Acta Physica Sinica, 2007, 56(3): 1499-1505. doi: 10.7498/aps.56.1499
    [17] Wang Hai-Long, Wang Xiu-Xi, Liang Hai-Yi. Molecular dynamics simulation of strain effects on surface melting for metal Cu. Acta Physica Sinica, 2005, 54(10): 4836-4841. doi: 10.7498/aps.54.4836
    [18] Chen Jun, Jing Fu-Qian, Zhang Jing-Lin, Chen Dong-Quan. . Acta Physica Sinica, 2002, 51(10): 2386-2392. doi: 10.7498/aps.51.2386
    [19] Liang Hai-Ge, Wang Xiu-Xi, Wu Heng-An, Wang Yu and. . Acta Physica Sinica, 2002, 51(10): 2308-2314. doi: 10.7498/aps.51.2308
    [20] Wu Heng-An, Ni Xiang-Gui, Wang Yu, Wang Xiu-Xi. . Acta Physica Sinica, 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
Metrics
  • Abstract views:  8446
  • PDF Downloads:  5194
  • Cited By: 0
Publishing process
  • Received Date:  09 October 2014
  • Accepted Date:  04 December 2014
  • Published Online:  05 April 2015

/

返回文章
返回
Baidu
map