-
With the development of energy storage technology, phase change materials which can be used to store thermal energy have received much attention in recent years. The nano-metallic materials are universally used as phase change materials due to their many desirable thermophysical properites. In this paper, the molecular dynamics simulation method is adopted to simulate the variations of melting point, density and phonon thermal conductivity of the nano aluminum with grain size ranging from 0.8 nm to 3.2 nm. The variations of density, specific heat capacity and phonon thermal conductivity with temperature of aluminum nanoparticles at a grain size of 1.6 nm are also studied. By using the embedded-atom potential, the thermophysical properties and phase change behaviors of aluminum nanoparticles are stimulated. The phase transition temperature of aluminum nanoparticles is studied based on the energy-temperature curve and the specific heat capacity-temperature curve. The surface energy theory and the size effect theory are applied to the analysis of the variation of the melting point of the aluminum nanoparticles, and the results show that the melting point increases as grain size augments, and it increases slowly when its grain size is between 2.2 nm and 3.2 nm but still holds the trend of increase. In order to obtain accurate thermal conductivity, the Green-Kubo method is adopted to calculate the phonon thermal conductivity of aluminum nanoparticle. As the grain size of aluminum nanoparticles increases, its density monotonically decreases, and the thermal conductivity monotonically increases linearly, which is in line with the theory of phonon. Similarly, with the increase of temperature, the density and thermal conductivity of aluminum nanoparticles of 1.6 nm in grain size both decrease. Moreover, the density of aluminum nanoparticle is generally lower than that of its bulk material. The study also shows that the heat transfer manner of aluminum nanoparticle is based on ballistic-diffusive heat conduction instead of the traditional diffusive heat conduction when it is in a nanoscale. The simulation studies the thermophysical properties of nanoparticles from the atomic perspective, and is of significance for guiding the design of the phase change materials based on the aluminum nanoparticles for thermal energy storage.
-
Keywords:
- aluminum nanoparticles /
- phase change of metal /
- thermal physical property /
- molecular dynamics
[1] Ge H, Li H, Mei S, Liu J 2013 Renew Sust. Energy Rev. 21 331
[2] Farid M M, Khudhair A M, Razack S A K, Al-Hallaj S 2004 Energy Conv. Mange. 45 1597
[3] Farkas D, Birchenall C E 1985 Metall Trans. A 16A 323
[4] Birchenall C E, Riechman A F 1980 Metall Trans. A 11A 1415
[5] Gleiter H 2000 Acta Mater. 48 1
[6] Lewis L J, Jensen P, Barrat J L 1997 Phys. Rev. B 56 2248
[7] Valkealahti S, Manninen M 1997 J. Phys.: Condens. Matter 9 4041
[8] Sankar N, Mathew N, Sobhan C B 2008 Int. Commun. Heat Mass Trans. 35 867
[9] Lewis L J, Jensen P, Combe N, Barrat J L 2000 Phys. Rev. B 61 16084
[10] Taherkhania F, Akbarzadeh H, Abroshan H, Fortunelli A 2012 Fluid Phase Equilibr. 335 26
[11] Yoshikawa T, Morita K 2003 J. Electrochem. Soc. 150 G465
[12] Mench M M, Kuo K K, Yeh C L, Lu Y C 1998 Combust. Sci. Technol. 135 269
[13] DeSena J T, Kuo K K 1999 J. Propul. Power 15 794
[14] Mettawee E B S, Assassa G M R 2007 Sol. Energy 81 839
[15] Levchenko E V, Evteev A V, Löwisch G G, Belova I V, Murch G E 2012 Intermetallics 22 193
[16] Puri P, Yang V 2007 J. Phys. Chem. C 111 11776
[17] Daw M S, Baskes M I 1984 Phys. Rev. B 29 6443
[18] Mendelev M I, Han S, Srolovitz D J, Ackland G J, Sun D Y, Asta M 2003 Philos. Mag. 83 3977
[19] Zhou X W, Wadley H N G, Johnson R A, Larson D J, Tabat N, Cerezo A, Petford-long A K, Smith G D W, Clifton P H, Martens R L, Kelly T F 2001 Acta Mater. 49 4005
[20] Foiles S M, Baskes M I, Daw M S 1986 Phys. Rev. B 33 7983
[21] Feng D L, Feng Y H, Zhang X X 2013 Acta Phys. Sin. 62 083602 (in Chinese) [冯黛丽, 冯妍卉, 张欣欣 2013 62 083602]
[22] Schelling P K, Phillpot S R, Keblinski P 2002 Phys. Rev. B 65 144306
[23] Alavi S, Thompson D L 2006 J. Phys. Chem. A 110 1518
[24] Lai S L, Carlsson J R A, Allen L H 1998 Appl. Phys. Lett. 72 1098
[25] Sun J, Simon S L 2007 Thermochim. Acta 463 32
[26] Huang C L, Feng Y H, Zhang X X, Li J, Wang G, Chou A H 2013 Acta Phys. Sin. 62 026501 (in Chinese) [黄丛亮, 冯妍卉, 张欣欣, 李静, 王戈, 侴爱辉 2013 62 026501]
[27] Yuan S P, Jiang P X 2004 Int. J. Thermophys. 27 581
[28] Hua Y C, Cao B Y 2014 Int. J. Heat Mass Transfer 78 755
[29] Hua Y C, Dong Y, Cao B Y 2013 Acta Phys. Sin. 62 244401 (in Chinese) [华钰超, 董源, 曹炳阳 2013 62 244401]
-
[1] Ge H, Li H, Mei S, Liu J 2013 Renew Sust. Energy Rev. 21 331
[2] Farid M M, Khudhair A M, Razack S A K, Al-Hallaj S 2004 Energy Conv. Mange. 45 1597
[3] Farkas D, Birchenall C E 1985 Metall Trans. A 16A 323
[4] Birchenall C E, Riechman A F 1980 Metall Trans. A 11A 1415
[5] Gleiter H 2000 Acta Mater. 48 1
[6] Lewis L J, Jensen P, Barrat J L 1997 Phys. Rev. B 56 2248
[7] Valkealahti S, Manninen M 1997 J. Phys.: Condens. Matter 9 4041
[8] Sankar N, Mathew N, Sobhan C B 2008 Int. Commun. Heat Mass Trans. 35 867
[9] Lewis L J, Jensen P, Combe N, Barrat J L 2000 Phys. Rev. B 61 16084
[10] Taherkhania F, Akbarzadeh H, Abroshan H, Fortunelli A 2012 Fluid Phase Equilibr. 335 26
[11] Yoshikawa T, Morita K 2003 J. Electrochem. Soc. 150 G465
[12] Mench M M, Kuo K K, Yeh C L, Lu Y C 1998 Combust. Sci. Technol. 135 269
[13] DeSena J T, Kuo K K 1999 J. Propul. Power 15 794
[14] Mettawee E B S, Assassa G M R 2007 Sol. Energy 81 839
[15] Levchenko E V, Evteev A V, Löwisch G G, Belova I V, Murch G E 2012 Intermetallics 22 193
[16] Puri P, Yang V 2007 J. Phys. Chem. C 111 11776
[17] Daw M S, Baskes M I 1984 Phys. Rev. B 29 6443
[18] Mendelev M I, Han S, Srolovitz D J, Ackland G J, Sun D Y, Asta M 2003 Philos. Mag. 83 3977
[19] Zhou X W, Wadley H N G, Johnson R A, Larson D J, Tabat N, Cerezo A, Petford-long A K, Smith G D W, Clifton P H, Martens R L, Kelly T F 2001 Acta Mater. 49 4005
[20] Foiles S M, Baskes M I, Daw M S 1986 Phys. Rev. B 33 7983
[21] Feng D L, Feng Y H, Zhang X X 2013 Acta Phys. Sin. 62 083602 (in Chinese) [冯黛丽, 冯妍卉, 张欣欣 2013 62 083602]
[22] Schelling P K, Phillpot S R, Keblinski P 2002 Phys. Rev. B 65 144306
[23] Alavi S, Thompson D L 2006 J. Phys. Chem. A 110 1518
[24] Lai S L, Carlsson J R A, Allen L H 1998 Appl. Phys. Lett. 72 1098
[25] Sun J, Simon S L 2007 Thermochim. Acta 463 32
[26] Huang C L, Feng Y H, Zhang X X, Li J, Wang G, Chou A H 2013 Acta Phys. Sin. 62 026501 (in Chinese) [黄丛亮, 冯妍卉, 张欣欣, 李静, 王戈, 侴爱辉 2013 62 026501]
[27] Yuan S P, Jiang P X 2004 Int. J. Thermophys. 27 581
[28] Hua Y C, Cao B Y 2014 Int. J. Heat Mass Transfer 78 755
[29] Hua Y C, Dong Y, Cao B Y 2013 Acta Phys. Sin. 62 244401 (in Chinese) [华钰超, 董源, 曹炳阳 2013 62 244401]
Catalog
Metrics
- Abstract views: 8446
- PDF Downloads: 5194
- Cited By: 0