Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Adaptive fuzzy synchronization for uncertain fractional-order chaotic systems with unknown non-symmetrical control gain

Liu Heng Li Sheng-Gang Sun Ye-Guo Wang Hong-Xing

Citation:

Adaptive fuzzy synchronization for uncertain fractional-order chaotic systems with unknown non-symmetrical control gain

Liu Heng, Li Sheng-Gang, Sun Ye-Guo, Wang Hong-Xing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper the synchronization problem for the uncertain fractional-order chaotic systems with unknown non-symmetrical control gain matrices is investigated by means of adaptive fuzzy control. Fuzzy logic systems are employed to approximate the unknown nonlinear functions. We decompose the control gain matrix into a positive definite matrix, a unity upper triangular matrix, and a diagonal matrix with diagonal entries +1 or -1. The positive matrix is used to construct the Lyapunov function; the diagonal matrix is employed to design the controller. Based on the fractional Lyapunov stability theorem, an adaptive fuzzy controller, which is accompanied by fractional adaptation laws, is established. The proposed methods can guarantee the boundedness of the involved signals as well as the asymptotical convergence of the synchronization errors. It should be pointed out that the methods for using quadratic Lyapunov function in the stability analysis of the fractional-order chaotic systems are developed in this paper. Based on the results of this paper, many control methods which are valid for integer-order nonlinear systems can be extended to control fractional-order nonlinear systems. Finally, the effectiveness of the proposed methods is shown by simulation studies.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11401243, 61403157), and the Fundamental Research Funds for the Central Universities (Grant No. GK201504002).
    [1]

    Podlubny I 1999 Fractional differential Equations (New York: Academic Press)

    [2]

    Li Y, Chen Y Q, Podlubny I 2009 Automatica 45 3690

    [3]

    Wang D F, Zhang J Y, Wang X Y 2013 Chin. Phys. B 22 100504

    [4]

    Yuan L G, Yang Q G 2012 Commun. Nonlinear Sci. Numer. Simul. 17 305

    [5]

    Li R, Zhang G J, Yao H, Zhu T, Zhang Z H 2014 Acta Phys. Sin. 63 230501 (in Chinese) [李睿, 张广军, 姚宏, 朱涛, 张志浩 2014 63 230501]

    [6]

    Aghababa M P 2012 Commun. Nonlinear Sci. Numer. Simul. 17 2670

    [7]

    Mahmoud G M, Mahmoud E E 2012 Nonlinear Dyn. 67 1613

    [8]

    Kim S H, Park P, Jeong C 2010 IET Control Theory Appl. 4 1828

    [9]

    Kiani B A, Fallahi K, Pariz N, Leung H 2009 Commun. Nonlinear Sci. Numer. Simul. 14 863

    [10]

    Ma S Q, Lu Q S, Feng Z S 2010 Int. J. Nonlinear Mech. 45 659

    [11]

    Li Z J, Zeng Y C 2013 Chin. Phys. B 22 040502

    [12]

    Zhou P, Ding R, Cao Y X 2012 Nonlinear Dyn. 70 1263

    [13]

    Huang L L, Qi X 2013 Acta Phys. Sin. 62 080507 (in Chinese) [黄丽莲, 齐雪 2013 62 080507]

    [14]

    Zhang R X, Yang S P 2010 Chin. Phys. B 19 020510

    [15]

    Yang L X, Jiang J 2014 Commun. Nonlinear Sci. Numer. Simulat. 19 1496

    [16]

    Liu J G, Huang L H, Meng Y M 2013 Int. J. Adapt. Control Signal Process. 27 1086

    [17]

    Hosseinnia S H, Ghaderi R, Ranjbar A N, Mahmoudiana M, and Momanic S 2010 Computers and Mathematics with Applications 59 1637

    [18]

    Yin C, Dadras S, and Zhong S M 2012 Journal of the Franklin Institute 349 2078

    [19]

    Pan L, Zhou W N, Fang J A, Li D Q 2010 Commun. Nonlinear Sci. Numer. Simulat. 15 3754

    [20]

    Senol B, Ates A, Alagoz B B, Yeroglu C 2014 ISA Transactions 53 189

    [21]

    Essounbouli N, Hamzaoui A, Zaytoon J 2006 Control Intell. Systems 34 12

    [22]

    Tong S C, Tang J, Wang T 2000 Fuzzy Sets and Systems 111 153

    [23]

    Tong S C, He X L, Zhang H G 2009 IEEE Trans. Fuzzy Syst. 17 1059

    [24]

    Boulkroune A, Tadjine M, M’Saad M, Farza M 2010 Fuzzy Sets and Systems 161 797

    [25]

    Tong S C, Liu C L, Li Y M 2010 IEEE Trans. Fuzzy Syst. 18 845

    [26]

    Liu H, Yu H J, Xiang W 2012 Acta Phys. Sin. 61 180503 (in Chinese) [刘恒, 余海军, 向伟 2012 61 180503]

    [27]

    Tong S C, Li Y M 2012 IEEE Trans. Fuzzy Syst. 20 168

    [28]

    Liu H, Yu H J, Xiang W 2012 Chin. Phys. B 21 120505

    [29]

    Pan Y P, Er M J 2013 IEEE Trans. Fuzzy Syst. 21 1123

    [30]

    Tong S C, Li Y M 2013 IEEE Trans. Fuzzy Syst. 21 134

    [31]

    Yang Y, Hua C C, Guan X P 2014 IEEE Trans. Fuzzy Syst. 22 631

    [32]

    Wang L X 1994 Adaptive Fuzzy Systems and Control: Design and Stability Analysis (Englewood Cliffs: Prentice Hall) pp120-144

    [33]

    Trigeassou J C, Maamri N, Sabatier J, Oustaloup A 2011 Signal Processing 91 437

    [34]

    Shen J, Lam J 2014 Automatica 50 547

    [35]

    Lin T C, Kuo C H 2011 ISA Transactions 50 548

    [36]

    Lin T C, Lee T Y, Balas V E 2011 Chaos, Solitons & Fractals 44 791

    [37]

    Aguila-Camacho N, Duarte-Mermoud M A, Gallegos J A 2014 Commun. Nonlinear Sci. Numer. Simulat. 19 2951

    [38]

    Costa P R, Hsu L, Imai A K, Kokotovic P 2003 Automatica 39 1251

    [39]

    Ahmed E, El-Sayed A M A, El-Saka H A A 2007 J. Math. Anal. Appl. 325 542

    [40]

    L J H, Chen G R, Yu X H, Leung H 2004 IEEE Trans. Circuits Syst. I 51 2476

    [41]

    L J H, Yu S M, Leung H, Chen G R 2006 IEEE Trans. Circuits Syst. I 53 149

  • [1]

    Podlubny I 1999 Fractional differential Equations (New York: Academic Press)

    [2]

    Li Y, Chen Y Q, Podlubny I 2009 Automatica 45 3690

    [3]

    Wang D F, Zhang J Y, Wang X Y 2013 Chin. Phys. B 22 100504

    [4]

    Yuan L G, Yang Q G 2012 Commun. Nonlinear Sci. Numer. Simul. 17 305

    [5]

    Li R, Zhang G J, Yao H, Zhu T, Zhang Z H 2014 Acta Phys. Sin. 63 230501 (in Chinese) [李睿, 张广军, 姚宏, 朱涛, 张志浩 2014 63 230501]

    [6]

    Aghababa M P 2012 Commun. Nonlinear Sci. Numer. Simul. 17 2670

    [7]

    Mahmoud G M, Mahmoud E E 2012 Nonlinear Dyn. 67 1613

    [8]

    Kim S H, Park P, Jeong C 2010 IET Control Theory Appl. 4 1828

    [9]

    Kiani B A, Fallahi K, Pariz N, Leung H 2009 Commun. Nonlinear Sci. Numer. Simul. 14 863

    [10]

    Ma S Q, Lu Q S, Feng Z S 2010 Int. J. Nonlinear Mech. 45 659

    [11]

    Li Z J, Zeng Y C 2013 Chin. Phys. B 22 040502

    [12]

    Zhou P, Ding R, Cao Y X 2012 Nonlinear Dyn. 70 1263

    [13]

    Huang L L, Qi X 2013 Acta Phys. Sin. 62 080507 (in Chinese) [黄丽莲, 齐雪 2013 62 080507]

    [14]

    Zhang R X, Yang S P 2010 Chin. Phys. B 19 020510

    [15]

    Yang L X, Jiang J 2014 Commun. Nonlinear Sci. Numer. Simulat. 19 1496

    [16]

    Liu J G, Huang L H, Meng Y M 2013 Int. J. Adapt. Control Signal Process. 27 1086

    [17]

    Hosseinnia S H, Ghaderi R, Ranjbar A N, Mahmoudiana M, and Momanic S 2010 Computers and Mathematics with Applications 59 1637

    [18]

    Yin C, Dadras S, and Zhong S M 2012 Journal of the Franklin Institute 349 2078

    [19]

    Pan L, Zhou W N, Fang J A, Li D Q 2010 Commun. Nonlinear Sci. Numer. Simulat. 15 3754

    [20]

    Senol B, Ates A, Alagoz B B, Yeroglu C 2014 ISA Transactions 53 189

    [21]

    Essounbouli N, Hamzaoui A, Zaytoon J 2006 Control Intell. Systems 34 12

    [22]

    Tong S C, Tang J, Wang T 2000 Fuzzy Sets and Systems 111 153

    [23]

    Tong S C, He X L, Zhang H G 2009 IEEE Trans. Fuzzy Syst. 17 1059

    [24]

    Boulkroune A, Tadjine M, M’Saad M, Farza M 2010 Fuzzy Sets and Systems 161 797

    [25]

    Tong S C, Liu C L, Li Y M 2010 IEEE Trans. Fuzzy Syst. 18 845

    [26]

    Liu H, Yu H J, Xiang W 2012 Acta Phys. Sin. 61 180503 (in Chinese) [刘恒, 余海军, 向伟 2012 61 180503]

    [27]

    Tong S C, Li Y M 2012 IEEE Trans. Fuzzy Syst. 20 168

    [28]

    Liu H, Yu H J, Xiang W 2012 Chin. Phys. B 21 120505

    [29]

    Pan Y P, Er M J 2013 IEEE Trans. Fuzzy Syst. 21 1123

    [30]

    Tong S C, Li Y M 2013 IEEE Trans. Fuzzy Syst. 21 134

    [31]

    Yang Y, Hua C C, Guan X P 2014 IEEE Trans. Fuzzy Syst. 22 631

    [32]

    Wang L X 1994 Adaptive Fuzzy Systems and Control: Design and Stability Analysis (Englewood Cliffs: Prentice Hall) pp120-144

    [33]

    Trigeassou J C, Maamri N, Sabatier J, Oustaloup A 2011 Signal Processing 91 437

    [34]

    Shen J, Lam J 2014 Automatica 50 547

    [35]

    Lin T C, Kuo C H 2011 ISA Transactions 50 548

    [36]

    Lin T C, Lee T Y, Balas V E 2011 Chaos, Solitons & Fractals 44 791

    [37]

    Aguila-Camacho N, Duarte-Mermoud M A, Gallegos J A 2014 Commun. Nonlinear Sci. Numer. Simulat. 19 2951

    [38]

    Costa P R, Hsu L, Imai A K, Kokotovic P 2003 Automatica 39 1251

    [39]

    Ahmed E, El-Sayed A M A, El-Saka H A A 2007 J. Math. Anal. Appl. 325 542

    [40]

    L J H, Chen G R, Yu X H, Leung H 2004 IEEE Trans. Circuits Syst. I 51 2476

    [41]

    L J H, Yu S M, Leung H, Chen G R 2006 IEEE Trans. Circuits Syst. I 53 149

  • [1] Chen Ye, Li Sheng-Gang, Liu Heng. Synchronization of fractional-order chaotic systems based on adaptive fuzzy control. Acta Physica Sinica, 2016, 65(17): 170501. doi: 10.7498/aps.65.170501
    [2] Huang Yu, Liu Yu-Feng, Peng Zhi-Min, Ding Yan-Jun. Research on particle swarm optimization algorithm with characteristic of quantum parallel and its application in parameter estimation for fractional-order chaotic systems. Acta Physica Sinica, 2015, 64(3): 030505. doi: 10.7498/aps.64.030505
    [3] Pan Guang, Wei Jing. Design of an adaptive sliding mode controller for synchronization of fractional-order chaotic systems. Acta Physica Sinica, 2015, 64(4): 040505. doi: 10.7498/aps.64.040505
    [4] Yang Ye-Hong, Xiao Jian, Ma Zhen-Zhen. Modified function projective synchronization for a class of partially linear fractional order chaotic systems. Acta Physica Sinica, 2013, 62(18): 180505. doi: 10.7498/aps.62.180505
    [5] Huang Li-Lian, Qi Xue. The synchronization of fractional order chaotic systems with different orders based on adaptive sliding mode control. Acta Physica Sinica, 2013, 62(8): 080507. doi: 10.7498/aps.62.080507
    [6] Liu Heng, Yu Hai-Jun, Xiang Wei. Modified function projective lag synchronization for multi-scroll chaotic system with unknown disturbances. Acta Physica Sinica, 2012, 61(18): 180503. doi: 10.7498/aps.61.180503
    [7] Ma Tie-Dong, Jiang Wei-Bo, Fu Jie, Xue Fang-Zheng. Synchronization of hyperchaotic systems via improved impulsive control method. Acta Physica Sinica, 2012, 61(10): 100507. doi: 10.7498/aps.61.100507
    [8] Cao He-Fei, Zhang Ruo-Xun. Parameter modulation digital communication and its circuit implementation using fractional-order chaotic system via a single driving variable. Acta Physica Sinica, 2012, 61(2): 020508. doi: 10.7498/aps.61.020508
    [9] Huang Li-Lian, Ma Nan. A new method for projective synchronization of different fractional order chaotic systems. Acta Physica Sinica, 2012, 61(16): 160510. doi: 10.7498/aps.61.160510
    [10] Ma Tie-Dong, Jiang Wei-Bo, Fu Jie. Impulsive synchronization of fractional order hyperchaotic systems based on comparison system. Acta Physica Sinica, 2012, 61(9): 090503. doi: 10.7498/aps.61.090503
    [11] Ma Tie-Dong, Jiang Wei-Bo, Fu Jie, Chai Yi, Chen Li-Ping, Xue Fang-Zheng. Adaptive synchronization of a class of fractional-order chaotic systems. Acta Physica Sinica, 2012, 61(16): 160506. doi: 10.7498/aps.61.160506
    [12] Sun Ning. Synchronization of fractional chaotic systems based on fractional-order interval systems. Acta Physica Sinica, 2011, 60(12): 120506. doi: 10.7498/aps.60.120506
    [13] Hu Jian-Bing, Xiao Jian, Zhao Ling-Dong. Synchronizing fractional chaotic systems with different orders. Acta Physica Sinica, 2011, 60(11): 110515. doi: 10.7498/aps.60.110515
    [14] Zhang Ruo-Xun, Cao He-Fei. Adaptive synchronization of fractional-order chaotic system via sliding mode control. Acta Physica Sinica, 2011, 60(5): 050510. doi: 10.7498/aps.60.050510
    [15] Zhou Ping, Kuang Fei. Synchronization between fractional-order chaotic system and chaotic system of integer orders. Acta Physica Sinica, 2010, 59(10): 6851-6858. doi: 10.7498/aps.59.6851
    [16] Xu Zhe, Liu Chong-Xin, Yang Tao. Controlling fractional-order new chaotic system based on Lyapunov equation. Acta Physica Sinica, 2010, 59(3): 1524-1531. doi: 10.7498/aps.59.1524
    [17] Zhang Ruo-Xun, Yang Yang, Yang Shi-Ping. Adaptive synchronization of the fractional-order unified chaotic system. Acta Physica Sinica, 2009, 58(9): 6039-6044. doi: 10.7498/aps.58.6039
    [18] Liu Ding, Yan Xiao-Mei. Projective synchronization of fractional-order chaotic systems based on sliding mode control. Acta Physica Sinica, 2009, 58(6): 3747-3752. doi: 10.7498/aps.58.3747
    [19] Hu Jian-Bing, Han Yan, Zhao Ling-Dong. Synchronizing fractional chaotic systems based on Lyapunov equation. Acta Physica Sinica, 2008, 57(12): 7522-7526. doi: 10.7498/aps.57.7522
    [20] XUE YUE-JU, FENG RU-PENG. CONTROL OF SPATIO-TEMPORAL CHAOS IN CONTINUOUS TIME COUPLED SYSTEMS BY USING ADAPTIVE FUZZY CONTROL. Acta Physica Sinica, 2001, 50(3): 440-444. doi: 10.7498/aps.50.440
Metrics
  • Abstract views:  7340
  • PDF Downloads:  508
  • Cited By: 0
Publishing process
  • Received Date:  21 October 2014
  • Accepted Date:  05 November 2014
  • Published Online:  05 April 2015

/

返回文章
返回
Baidu
map