-
To synchronize fractional chaotic systems with different orders, a method is proposed in which a fractional chaotic system with different orders is changed into a fractional chaotic system with the same order but different structures, according to the properties of fractional differential equation. This method is successfully used to synchronize fractional Lorenz chaotic systems. Numerical simulation demonstrates the effectiveness of the method.
-
Keywords:
- different order /
- fractional chaotic system /
- synchronizing /
- different structure
[1] Mandelbort B B 1983 The fractal Geometry of Nature (New York: Freeman)
[2] Magin R L 2004 Critical Rev. in Biomed. Engin. 32 193
[3] Wang Y W, Guan Z H, Xiao J W 2004 Chaos 14 199
[4] Huang L, Feng R, Wang M 2004 Phys. Lett. A 32 271
[5] Li G H, Zhou S P 2007 Chaos Sol. Fract. 32 516
[6] Guo L X, Xu Z Y, Hu M F 2008 Chin. Phys. B 17 4067
[7] Zhao L D, Hu J B , Liu X H 2010 Acta Phys. Sin. 59 2305 (in Chinese) [赵灵冬、胡建兵、刘旭辉 2010 59 2305]
[8] Mohammad S T, Mohammad H 2008 Physica A 387 57
[9] Liu C X, Liu T, Liu L, Liu K 2004 Chaos, Sol. and Fract. 22 1031
[10] Zhou P, Zhu W 2011 Nonlinear Anal. RWA 12 811
[11] Peng G J, Jiang Y L, Chen F 2008 Physica A 387 3738
[12] Podlubny I 1999 Fractional Differential Equations (New York: Academic Press)
[13] Hu J B , Han Y, Zhao L D 2009 Acta Phys. Sin. 58 2235(in Chinese) [胡建兵、韩 焱、赵灵冬 2009 58 2235]
[14] Lorenz E N 1963 J. Atmos. Sci. 20 130
[15] Yan J P, Li C P 2004 Chaos, Sol. and Fract. 22 443
[16] Wang J W, Xiong X H, Zhang Y B 2006 Physica A 370 279
-
[1] Mandelbort B B 1983 The fractal Geometry of Nature (New York: Freeman)
[2] Magin R L 2004 Critical Rev. in Biomed. Engin. 32 193
[3] Wang Y W, Guan Z H, Xiao J W 2004 Chaos 14 199
[4] Huang L, Feng R, Wang M 2004 Phys. Lett. A 32 271
[5] Li G H, Zhou S P 2007 Chaos Sol. Fract. 32 516
[6] Guo L X, Xu Z Y, Hu M F 2008 Chin. Phys. B 17 4067
[7] Zhao L D, Hu J B , Liu X H 2010 Acta Phys. Sin. 59 2305 (in Chinese) [赵灵冬、胡建兵、刘旭辉 2010 59 2305]
[8] Mohammad S T, Mohammad H 2008 Physica A 387 57
[9] Liu C X, Liu T, Liu L, Liu K 2004 Chaos, Sol. and Fract. 22 1031
[10] Zhou P, Zhu W 2011 Nonlinear Anal. RWA 12 811
[11] Peng G J, Jiang Y L, Chen F 2008 Physica A 387 3738
[12] Podlubny I 1999 Fractional Differential Equations (New York: Academic Press)
[13] Hu J B , Han Y, Zhao L D 2009 Acta Phys. Sin. 58 2235(in Chinese) [胡建兵、韩 焱、赵灵冬 2009 58 2235]
[14] Lorenz E N 1963 J. Atmos. Sci. 20 130
[15] Yan J P, Li C P 2004 Chaos, Sol. and Fract. 22 443
[16] Wang J W, Xiong X H, Zhang Y B 2006 Physica A 370 279
Catalog
Metrics
- Abstract views: 8584
- PDF Downloads: 699
- Cited By: 0