-
New infinite sequence complexion two-soliton solutions of a kind of nonlinear evolution equation are constructed with the help of function transformations and two kinds of elliptic equations. Step one,according to two function transformations, a kind of nonlinear evolution equation is changed into a nonlinear ordinary differential equation of second order. Step two, using function transformation, the nonlinear ordinary differential equation of second order is transformed into a set of nonlinear ordinary differential equations of first order, and the first integral of the set of equations is obtained. Finally, the first integral with new solutions and Bäcklund transformation of two kinds of elliptic equations are used to search for new infinite sequence complexion two-soliton solutions of a kind of nonlinear evolution equation.
-
Keywords:
- nonlinear evolution equation /
- function transformation /
- first integral /
- complexion two-soliton solutions
[1] Schäfer T, Wayne C E 2004 Physica D 196 90
[2] Pietrzyk M, Kanattsšikov I, Bandelow U 2008 J. Nonli- near Math. Phys. 15 162
[3] Sakovich S 2008 J. Phys. Soc. Jpn. 77 123001
[4] Rui W G 2013 Commun. Nonlinear. Sci. Numer. Simulat. 18 2678
[5] Sun W R, Tian B, Jiang Y, Zhen H L 2014 Annals. Phys. 343 215
[6] Wang Y F, Tian B, Li M, Wang P, Wang M 2014 Commun. Nonlinear Sci. Numer. Simulat. 19 1783
[7] Zuo D W, Gao Y T, Meng G Q, Shen Y J, Yu X 2014 Nonlinear Dyn. 75 701
[8] Sun Z Y, Gao Y T, Yu X, Liu Y 2013 Phys. Lett. A 377 3283
[9] Taogetusang, Bai Y M 2012 Acta Phys. Sin. 61 060201 (in Chinese) [套格图桑, 白玉梅 2012 61 060201]
[10] Taogetusang, Sirendaoerji, Li S M 2011 Commun. Theor. Phys. 55 949
[11] Taogetusang, Sirendaoerji, Li S M 2010 Chin. Phys. 19 080303
[12] Taogetusang 2011 Acta Phys. Sin. 60 050201 (in Chinese) [套格图桑 2011 60 050201]
[13] Wang J M 2012 Acta Phys. Sin. 61 080201 (in Chinese) [王军民 2012 61 080201]
[14] Chen Y, Li B, Zhang H Q 2003 Chin. Phys. 12 940
[15] Li Z L 2009 Chin. Phys. B 18 4074
[16] Chen Y, Li B, Zhang H Q 2003 Commun. Theor. Phys. 39 135
[17] Zhang L, Zhang L F, Li C Y 2008 Chin. Phys. B 17 403
[18] Xie F D, Gao X S 2004 Commun. Theor. Phys. 41 353
[19] Taogetusang, Sirendaoerji 2006 Chin. Phys. 15 1143
[20] Li D S, Zhang H Q 2003 Commun. Theor. Phys. 40 143
[21] Xu G Q, Li Z B 2003 Commun. Theor. Phys. 39 39
[22] Wang M L, Li X Z, Zhang J L 2008 Phys. Lett. A 372 417
-
[1] Schäfer T, Wayne C E 2004 Physica D 196 90
[2] Pietrzyk M, Kanattsšikov I, Bandelow U 2008 J. Nonli- near Math. Phys. 15 162
[3] Sakovich S 2008 J. Phys. Soc. Jpn. 77 123001
[4] Rui W G 2013 Commun. Nonlinear. Sci. Numer. Simulat. 18 2678
[5] Sun W R, Tian B, Jiang Y, Zhen H L 2014 Annals. Phys. 343 215
[6] Wang Y F, Tian B, Li M, Wang P, Wang M 2014 Commun. Nonlinear Sci. Numer. Simulat. 19 1783
[7] Zuo D W, Gao Y T, Meng G Q, Shen Y J, Yu X 2014 Nonlinear Dyn. 75 701
[8] Sun Z Y, Gao Y T, Yu X, Liu Y 2013 Phys. Lett. A 377 3283
[9] Taogetusang, Bai Y M 2012 Acta Phys. Sin. 61 060201 (in Chinese) [套格图桑, 白玉梅 2012 61 060201]
[10] Taogetusang, Sirendaoerji, Li S M 2011 Commun. Theor. Phys. 55 949
[11] Taogetusang, Sirendaoerji, Li S M 2010 Chin. Phys. 19 080303
[12] Taogetusang 2011 Acta Phys. Sin. 60 050201 (in Chinese) [套格图桑 2011 60 050201]
[13] Wang J M 2012 Acta Phys. Sin. 61 080201 (in Chinese) [王军民 2012 61 080201]
[14] Chen Y, Li B, Zhang H Q 2003 Chin. Phys. 12 940
[15] Li Z L 2009 Chin. Phys. B 18 4074
[16] Chen Y, Li B, Zhang H Q 2003 Commun. Theor. Phys. 39 135
[17] Zhang L, Zhang L F, Li C Y 2008 Chin. Phys. B 17 403
[18] Xie F D, Gao X S 2004 Commun. Theor. Phys. 41 353
[19] Taogetusang, Sirendaoerji 2006 Chin. Phys. 15 1143
[20] Li D S, Zhang H Q 2003 Commun. Theor. Phys. 40 143
[21] Xu G Q, Li Z B 2003 Commun. Theor. Phys. 39 39
[22] Wang M L, Li X Z, Zhang J L 2008 Phys. Lett. A 372 417
Catalog
Metrics
- Abstract views: 6988
- PDF Downloads: 427
- Cited By: 0