Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Riemann theta function and other several kinds of new solutions of nonlinear evolution equations

Taogetusang Bai Yu Mei

Citation:

Riemann theta function and other several kinds of new solutions of nonlinear evolution equations

Taogetusang, Bai Yu Mei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Riemann theta function and other several kinds of new solutions to the second kind of elliptic equation are obtained to construct the infinite sequence complexiton solutions of nonlinear evolution equations. Based on this, applying Bcklund transformation and nonlinear superposition formula of the solutions to the second kind of elliptic equation and Riccati equation, mKdV equation is chosen as an example to seek infinite sequence new complexiton solutions with the help of symbolic computation system Mathematica, which are composed of Riemann theta function, Jacobi elliptic function, hyperbolic function, triangular function and rational function in several forms.
    • Funds: Project supported by the Natural Natural Science Foundation of China (Grant No. 10862003), the Science Research Foundation of Institution of Higher Education of Inner Mongolia Autonomous Region, China (Grant No. NJZY12031) and the Natural Science Foundation of Inner Mongolia Autonomous Region, China (Grant No. 2010MS0111).
    [1]

    Fan E G 2000 Phys. Lett. A 277 212

    [2]

    Chen Y, Li B, Zhang H Q 2003 Chin. Phys. 12 940

    [3]

    Chen Y, Yan Z Y, Li B, Zhang H Q 2003 Chin. Phys. 12 1

    [4]

    Chen Y, Li B, Zhang H Q 2003 Commun. Theor. Phys. (Beijing) 40 137

    [5]

    Li D S, Zhang H Q 2003 Commun. Theor. Phys. (Beijing) 40 143

    [6]

    Li D S, Zhang H Q 2004 Chin. Phys. 13 984

    [7]

    Li D S, Zhang H Q 2004 Chin. Phys. 13 1377

    [8]

    Chen H T, Zhang H Q 2004 Commun. Theor. Phys. (Beijing) 42 497

    [9]

    Xie F D, Chen J, L Z S 2005 Commun. Theor. Phys. (Beijing) 43 585

    [10]

    Xie F D, Yuan Z T 2005 Commun. Theor. Phys. (Beijing) 43 39

    [11]

    Zhen X D, Chen Y, Li B, Zhang H Q 2003 Commun. Theor. Phys. (Beijing) 39 647

    [12]

    L Z S, Zhang H Q 2003 Commun. Theor. Phys. (Beijing) 39 405

    [13]

    Xie F D, Gao X S 2004 Commun. Theor. Phys. (Beijing) 41 353

    [14]

    Chen Y, Li B 2004 Commun. Theor. Phys. (Beijing) 41 1

    [15]

    Ma S H, Fang J P, Zhu H P 2007 Acta Phys. Sin. 56 4319 (in Chinese) [马松华,方建平,朱海平 2007 56 4319]

    [16]

    Ma S H, Wu X H, Fang J P, Zheng C L 2008 Acta Phys. Sin. 57 11 (in Chinese) [马松华,吴小红,方建平,郑春龙 2008 57 11]

    [17]

    Pan J T, Gong L X 2008 Chin. Phys. B 17 399

    [18]

    Jiao X Y, Wang J H, Zhang H Q 2005 Commun. Theor. Phys. (Beijing) 44 407

    [19]

    Liu Y P, Li Z B 2003 Chin. Phys. Lett. 20 317

    [20]

    Xu G Q, Li Z B 2003 Commun. Theor. Phys. (Beijing) 39 39

    [21]

    Li Z L 2009 Chin. Phys. B 18 4074

    [22]

    Wang Z, Li D S, Lu H F, Zhang H Q 2005 Chin. Phys. 14 2158

    [23]

    Li D S, Zhang H Q 2004 Chin. Phys. 13 1377

    [24]

    Lu B, Zhang H Q 2008 Chin. Phys. B 17 3974

    [25]

    Wang Z, Zhang H Q 2006 Chin. Phys. 15 2210

    [26]

    Zhang J L, Ren D F, Wang M L, Wang Y M, Fang Z D 2003 Chin. Phys. 12 825

    [27]

    Zhang L, Zhang L F, Li C Y 2008 Chin. Phys. B 17 403

    [28]

    Zhao X Q, Zhi H Y, Zhang H Q 2006 Chin. Phys. 15 2202

    [29]

    Li J B 2007 Sci. Chin. Math. A 50 153

    [30]

    Li H M 2003 Commun. Theor. Phys. (Beijing) 39 395

    [31]

    Li H M 2005 Chin. Phys. 14 251

    [32]

    Li H M 2002 Chin. Phys. 11 1111

    [33]

    Taogetusang, Sirendaoerji 2006 Chin. Phys. 15 2809

    [34]

    Liu C S 2005 Chin. Phys. 14 1710

    [35]

    Zhu J M, Zheng C L, Ma Z Y 2004 Chin. Phys. 13 2008

    [36]

    Fu Z T, Liu S D, Liu S K 2003 Commun. Theor. Phys. (Beijing) 39 531

    [37]

    Fu Z T, Liu S K, Liu S D 2004 Commun. Theor. Phys. (Beijing) 42 343

    [38]

    Taogetusang, Sirendaoerji 2008 Acta Phys. Sin. 57 1295 (in Chinese) [套格图桑,斯仁道尔吉 2008 57 1295]

    [39]

    Sirendaoerji, Sun J 2003 Phys. Lett. A 309 387

    [40]

    Taogetusang, Sirendaoerji 2006 Acta Phys. Sin. 55 3246 (in Chinese) [套格图桑,斯仁道尔吉 2006 55 3246]

    [41]

    Taogetusang, Sirendaoerji 2006 Chin. Phys. 15 1143

    [42]

    Taogetusang, Sirendaoerji 2007 Acta Phys. Sin. 56 627 (in Chinese) [套格图桑,斯仁道尔吉 2007 56 627]

    [43]

    Taogetusang, Sirendaoerji 2006 Acta Phys. Sin. 55 13 (in Chinese) [套格图桑,斯仁道尔吉 2006 55 13]

    [44]

    Fu Z T, Liu S K, Liu S D 2003 Commun. Theor. Phys. (Beijing) 39 27

    [45]

    Yu J, Ke Y Q, Zhang W J 2004 Commun. Theor. Phys. (Beijing) 40 493

    [46]

    Sirendaoerji, Sun J 2002 Phys. Lett. A 298 133

    [47]

    Taogetusang, Sirendaoerji,Wang Q P 2009 Acta Sci. J. Nat. Univ. Neimongol. 38 387 (in Chinese) [套格图桑,斯仁道尔吉,王庆鹏 2009 内蒙古师范大学学报 38 387]

    [48]

    Wang J M 2012 Acta Phys. Sin. 61 080201 (in Chinese) [王军民 2012 61 080201]

    [49]

    Lawden D F 1989 Elliptic Functions and Applications (Berlin: Springer-Verlag) p496

    [50]

    Li D S, Zhang H Q 2006 Acta Phys. Sin. 55 1565 (in Chinese) [李德生, 张鸿庆 2006 55 1565]

    [51]

    Wu H Y, Zhang L, Tan Y K, Zhou X T 2008 Acta Phys. Sin. 57 3312 (in Chinese) [吴海燕, 张亮, 谭言科, 周小滔 2008 57 3312]

    [52]

    Liu S K, Fu Z T, Liu S D, Zhao Q 2002 Acta Phys. Sin. 51 10 (in Chinese) [刘式适,付遵涛,刘式达,赵强 2002 51 10]

    [53]

    Liu S K, Fu Z T, Liu S D, Zhao Q 2001 Acta Phys. Sin. 50 2069 (in Chinese) [刘式适,付遵涛,刘式达,赵强 2001 50 2069]

    [54]

    Liu S K, Fu Z T, Wang Z G, Liu S D 2003 Acta Phys. Sin. 52 1838 (in Chinese) [刘式适, 付遵涛,王彰贵,刘式达 2003 52 1838]

    [55]

    Liu S K, Chen H, Fu Z T, Liu S D 2003 Acta Phys. Sin. 52 1843 (in Chinese) [刘式适,陈华,付遵涛,刘式达 2003 52 1843]

    [56]

    Shi Y R, Guo P, L K P, Duan W S 2004 Acta Phys. Sin. 53 3265 (in Chinese) [石玉仁, 郭鹏,吕克璞,段文山 2004 53 3265]

    [57]

    Taogetusang, Sirendaoerji, Li S M 2011 Commun. Theor. Phys. (Beijing) 55 949

  • [1]

    Fan E G 2000 Phys. Lett. A 277 212

    [2]

    Chen Y, Li B, Zhang H Q 2003 Chin. Phys. 12 940

    [3]

    Chen Y, Yan Z Y, Li B, Zhang H Q 2003 Chin. Phys. 12 1

    [4]

    Chen Y, Li B, Zhang H Q 2003 Commun. Theor. Phys. (Beijing) 40 137

    [5]

    Li D S, Zhang H Q 2003 Commun. Theor. Phys. (Beijing) 40 143

    [6]

    Li D S, Zhang H Q 2004 Chin. Phys. 13 984

    [7]

    Li D S, Zhang H Q 2004 Chin. Phys. 13 1377

    [8]

    Chen H T, Zhang H Q 2004 Commun. Theor. Phys. (Beijing) 42 497

    [9]

    Xie F D, Chen J, L Z S 2005 Commun. Theor. Phys. (Beijing) 43 585

    [10]

    Xie F D, Yuan Z T 2005 Commun. Theor. Phys. (Beijing) 43 39

    [11]

    Zhen X D, Chen Y, Li B, Zhang H Q 2003 Commun. Theor. Phys. (Beijing) 39 647

    [12]

    L Z S, Zhang H Q 2003 Commun. Theor. Phys. (Beijing) 39 405

    [13]

    Xie F D, Gao X S 2004 Commun. Theor. Phys. (Beijing) 41 353

    [14]

    Chen Y, Li B 2004 Commun. Theor. Phys. (Beijing) 41 1

    [15]

    Ma S H, Fang J P, Zhu H P 2007 Acta Phys. Sin. 56 4319 (in Chinese) [马松华,方建平,朱海平 2007 56 4319]

    [16]

    Ma S H, Wu X H, Fang J P, Zheng C L 2008 Acta Phys. Sin. 57 11 (in Chinese) [马松华,吴小红,方建平,郑春龙 2008 57 11]

    [17]

    Pan J T, Gong L X 2008 Chin. Phys. B 17 399

    [18]

    Jiao X Y, Wang J H, Zhang H Q 2005 Commun. Theor. Phys. (Beijing) 44 407

    [19]

    Liu Y P, Li Z B 2003 Chin. Phys. Lett. 20 317

    [20]

    Xu G Q, Li Z B 2003 Commun. Theor. Phys. (Beijing) 39 39

    [21]

    Li Z L 2009 Chin. Phys. B 18 4074

    [22]

    Wang Z, Li D S, Lu H F, Zhang H Q 2005 Chin. Phys. 14 2158

    [23]

    Li D S, Zhang H Q 2004 Chin. Phys. 13 1377

    [24]

    Lu B, Zhang H Q 2008 Chin. Phys. B 17 3974

    [25]

    Wang Z, Zhang H Q 2006 Chin. Phys. 15 2210

    [26]

    Zhang J L, Ren D F, Wang M L, Wang Y M, Fang Z D 2003 Chin. Phys. 12 825

    [27]

    Zhang L, Zhang L F, Li C Y 2008 Chin. Phys. B 17 403

    [28]

    Zhao X Q, Zhi H Y, Zhang H Q 2006 Chin. Phys. 15 2202

    [29]

    Li J B 2007 Sci. Chin. Math. A 50 153

    [30]

    Li H M 2003 Commun. Theor. Phys. (Beijing) 39 395

    [31]

    Li H M 2005 Chin. Phys. 14 251

    [32]

    Li H M 2002 Chin. Phys. 11 1111

    [33]

    Taogetusang, Sirendaoerji 2006 Chin. Phys. 15 2809

    [34]

    Liu C S 2005 Chin. Phys. 14 1710

    [35]

    Zhu J M, Zheng C L, Ma Z Y 2004 Chin. Phys. 13 2008

    [36]

    Fu Z T, Liu S D, Liu S K 2003 Commun. Theor. Phys. (Beijing) 39 531

    [37]

    Fu Z T, Liu S K, Liu S D 2004 Commun. Theor. Phys. (Beijing) 42 343

    [38]

    Taogetusang, Sirendaoerji 2008 Acta Phys. Sin. 57 1295 (in Chinese) [套格图桑,斯仁道尔吉 2008 57 1295]

    [39]

    Sirendaoerji, Sun J 2003 Phys. Lett. A 309 387

    [40]

    Taogetusang, Sirendaoerji 2006 Acta Phys. Sin. 55 3246 (in Chinese) [套格图桑,斯仁道尔吉 2006 55 3246]

    [41]

    Taogetusang, Sirendaoerji 2006 Chin. Phys. 15 1143

    [42]

    Taogetusang, Sirendaoerji 2007 Acta Phys. Sin. 56 627 (in Chinese) [套格图桑,斯仁道尔吉 2007 56 627]

    [43]

    Taogetusang, Sirendaoerji 2006 Acta Phys. Sin. 55 13 (in Chinese) [套格图桑,斯仁道尔吉 2006 55 13]

    [44]

    Fu Z T, Liu S K, Liu S D 2003 Commun. Theor. Phys. (Beijing) 39 27

    [45]

    Yu J, Ke Y Q, Zhang W J 2004 Commun. Theor. Phys. (Beijing) 40 493

    [46]

    Sirendaoerji, Sun J 2002 Phys. Lett. A 298 133

    [47]

    Taogetusang, Sirendaoerji,Wang Q P 2009 Acta Sci. J. Nat. Univ. Neimongol. 38 387 (in Chinese) [套格图桑,斯仁道尔吉,王庆鹏 2009 内蒙古师范大学学报 38 387]

    [48]

    Wang J M 2012 Acta Phys. Sin. 61 080201 (in Chinese) [王军民 2012 61 080201]

    [49]

    Lawden D F 1989 Elliptic Functions and Applications (Berlin: Springer-Verlag) p496

    [50]

    Li D S, Zhang H Q 2006 Acta Phys. Sin. 55 1565 (in Chinese) [李德生, 张鸿庆 2006 55 1565]

    [51]

    Wu H Y, Zhang L, Tan Y K, Zhou X T 2008 Acta Phys. Sin. 57 3312 (in Chinese) [吴海燕, 张亮, 谭言科, 周小滔 2008 57 3312]

    [52]

    Liu S K, Fu Z T, Liu S D, Zhao Q 2002 Acta Phys. Sin. 51 10 (in Chinese) [刘式适,付遵涛,刘式达,赵强 2002 51 10]

    [53]

    Liu S K, Fu Z T, Liu S D, Zhao Q 2001 Acta Phys. Sin. 50 2069 (in Chinese) [刘式适,付遵涛,刘式达,赵强 2001 50 2069]

    [54]

    Liu S K, Fu Z T, Wang Z G, Liu S D 2003 Acta Phys. Sin. 52 1838 (in Chinese) [刘式适, 付遵涛,王彰贵,刘式达 2003 52 1838]

    [55]

    Liu S K, Chen H, Fu Z T, Liu S D 2003 Acta Phys. Sin. 52 1843 (in Chinese) [刘式适,陈华,付遵涛,刘式达 2003 52 1843]

    [56]

    Shi Y R, Guo P, L K P, Duan W S 2004 Acta Phys. Sin. 53 3265 (in Chinese) [石玉仁, 郭鹏,吕克璞,段文山 2004 53 3265]

    [57]

    Taogetusang, Sirendaoerji, Li S M 2011 Commun. Theor. Phys. (Beijing) 55 949

  • [1] Taogetusang, Yi Li-Na. New complexion two-soliton solutions of a class of nonlinear evolution equation. Acta Physica Sinica, 2015, 64(2): 020201. doi: 10.7498/aps.64.020201
    [2] Taogetusang. Construction of new infinite sequence complexion soliton-like solutions of nonlinear evolution equations. Acta Physica Sinica, 2013, 62(7): 070202. doi: 10.7498/aps.62.070202
    [3] Cheng Jian-Jun, Zhang Hong-Qing. Wronskian solution of general nonlinear evolution equations and Young diagram prove. Acta Physica Sinica, 2013, 62(20): 200504. doi: 10.7498/aps.62.200504
    [4] Taogetusang, Bai Yu-Mei. A method of constructing infinite sequence soliton-like solutions of nonlinear evolution equations. Acta Physica Sinica, 2012, 61(13): 130202. doi: 10.7498/aps.61.130202
    [5] Taogetusang. Infinite sequence peak solitary wave solutions ofDegasperis-Procesi equation. Acta Physica Sinica, 2011, 60(7): 070204. doi: 10.7498/aps.60.070204
    [6] Taogetusang. Several auxiliary equations and infinite sequence exactsolutions to nonlinear evolution equations. Acta Physica Sinica, 2011, 60(5): 050201. doi: 10.7498/aps.60.050201
    [7] Taogetusang. A method for constructing infinite sequence complexiton solutions to nonlinear evolution equations. Acta Physica Sinica, 2011, 60(1): 010202. doi: 10.7498/aps.60.010202
    [8] Taogetusang, Narenmandula. New infinite sequence exact solutions of nonlinear evolution equations with variable coefficients by the second kind of elliptic equation. Acta Physica Sinica, 2011, 60(9): 090201. doi: 10.7498/aps.60.090201
    [9] Taogetusang, Sirendaoerji. Constructing new exact solutions to nonlinear difference-differential equations by Riccati equation. Acta Physica Sinica, 2009, 58(9): 5894-5902. doi: 10.7498/aps.58.5894
    [10] Mo Jia-Qi, Zhang Wei-Jiang, He Ming. The solitary wave approximate solution of strongly nonlinear evolution equations. Acta Physica Sinica, 2007, 56(4): 1843-1846. doi: 10.7498/aps.56.1843
    [11] Wu Guo-Jiang, Zhang Miao, Shi Liang-Ma, Zhang Wen-Liang, Han Jia-Hua. The extended expansion method for Jacobi elliptic function and new exact periodic solutions of Zakharov equations. Acta Physica Sinica, 2007, 56(9): 5054-5059. doi: 10.7498/aps.56.5054
    [12] Wu Guo-Jiang, Han Jia-Hua, Shi Liang-Ma, Zhang Miao. Double Jacobian elliptic function expansion method under a general function transform and its applications. Acta Physica Sinica, 2006, 55(8): 3858-3863. doi: 10.7498/aps.55.3858
    [13] Taogetusang, Sirendaoerji. The method for constructing the exact solutions to the nonlinear evolution equation. Acta Physica Sinica, 2006, 55(12): 6214-6221. doi: 10.7498/aps.55.6214
    [14] Liu Cheng-Shi. Trial equation method and its applications to nonlinear evolution equations. Acta Physica Sinica, 2005, 54(6): 2505-2509. doi: 10.7498/aps.54.2505
    [15] Han Zhao-Xiu. New exact solutions for nonlinear Klein-Gordon equations. Acta Physica Sinica, 2005, 54(4): 1481-1484. doi: 10.7498/aps.54.1481
    [16] Lü Da-Zhao. Abundant Jacobi elliptic function solutions of nonlinear evolution equations. Acta Physica Sinica, 2005, 54(10): 4501-4505. doi: 10.7498/aps.54.4501
    [17] Liu Guan-Ting, Fan Tian-You. Jacobi elliptic function expansion method under a general function transform and its applications. Acta Physica Sinica, 2004, 53(3): 676-679. doi: 10.7498/aps.53.676
    [18] Zhang Shan-Qing, Li Zhi-Bin. A new application of Jacobi elliptic function expansion method. Acta Physica Sinica, 2003, 52(5): 1066-1070. doi: 10.7498/aps.52.1066
    [19] Xu Gui-Qiong, Li Zhi-Bin. . Acta Physica Sinica, 2002, 51(5): 946-950. doi: 10.7498/aps.51.946
    [20] LIU CHUN-PING. THE SOLITON SOLUTIONS FOR A CLASS OF NONLINEAR COUPLED EQUATIONS. Acta Physica Sinica, 2000, 49(10): 1904-1908. doi: 10.7498/aps.49.1904
Metrics
  • Abstract views:  7565
  • PDF Downloads:  965
  • Cited By: 0
Publishing process
  • Received Date:  16 August 2012
  • Accepted Date:  25 January 2013
  • Published Online:  05 May 2013

/

返回文章
返回
Baidu
map