-
A kind of illumination calculation of array antenna composed of light emitting diode (LED) source based on Lambert radiation model is proposed. This paper puts emphasis on the optimal design for the transmitting antenna of indoor visible light communication. And it also analyzes the influence of the forms of the spatial distribution of the light source, the distance between light sources, and the angle between the center beam of light source and optical axis of the system, as well as the layer spacing of space distribution on illumination uniformity. A circular array antenna is superior to a rectangular array antenna containing the same number of light sources in illumination uniformity and stability of signal transmission, which may increase by 10%. As the distance between light sources and the angle between the center beams of light sources and optical axis keep increasing, the illumination uniformity of array antenna composed of LED source increases first and then starts to drop. As a result, there exist the optimal values in the distance and the angle respectively. Illumination uniformity increases with the decrease of the distance of space distribution. The optimal value of design parameter of transmitting antenna array in a common room has been given, therefore, it optimizes launch performance, saves as much as 13% the number of light source and reduces the cost. These studies for the design of the transmitting antenna system provide a theoretical basis and practical values.
-
Keywords:
- indoor visible light communication
[1] Li P L, Yang Z P, Wang Z J, Guo Q L 2008 Chin. Phys. B 17 1907
[2] Wang Z J, Yang Z P, Guo Q L, Li P L, Fu G S 2009 Chin. Phys. B 18 2068
[3] [4] Pei L, Ning T G, Li T J, Dong X W, Jian S S 2005 Acta Phys. Sin. 54 1630 (in Chinese) [裴丽, 宁提纲, 李唐军, 董小伟, 简水生 2005 54 1630]
[5] [6] [7] O'brien D 2009 Proc. SPIE 7464 74640B
[8] Grubor J, Randel S, Langer K D, Walewski J W 2008 IEEE J. Light. Technol. 26 3883
[9] [10] [11] Komine T, Nakagawa M 2004 IEEE Trans. Consum. Electron 50 100
[12] [13] Komine T, Nakagawa M 2003 IEEE Trans. Consum. Electron 49 71
[14] [15] Wang D Y, Sun H Q, Xie X Y, Zhang P J 2012 Acta Phys. Sin. 61 227303 (in Chinese) [王度阳, 孙慧卿, 解晓宇, 张盼君 2012 61 227303]
[16] [17] Liu H Z, Ji Y F 2013 Acta Phys. Sin. 62 114203 (in Chinese) [刘宏展, 纪越峰 2013 62 114203]
[18] [19] Moreno I, Avendao M, Tzonchev R I 2006 Appl. Opt. 45 2265
[20] [21] Moreno I, Muoz J 2007 Opt. Eng. 46 033001
[22] Moreno I, Sun C C 2008 Proc. SPIE 7058 70580R
[23] [24] [25] Ding D Q, Ke X Z, Li J X 2011 J. Appl. Sci. 29 238 (in Chinese) [丁德强, 柯熙政, 李建勋 2011 应用科学学报 29 238]
-
[1] Li P L, Yang Z P, Wang Z J, Guo Q L 2008 Chin. Phys. B 17 1907
[2] Wang Z J, Yang Z P, Guo Q L, Li P L, Fu G S 2009 Chin. Phys. B 18 2068
[3] [4] Pei L, Ning T G, Li T J, Dong X W, Jian S S 2005 Acta Phys. Sin. 54 1630 (in Chinese) [裴丽, 宁提纲, 李唐军, 董小伟, 简水生 2005 54 1630]
[5] [6] [7] O'brien D 2009 Proc. SPIE 7464 74640B
[8] Grubor J, Randel S, Langer K D, Walewski J W 2008 IEEE J. Light. Technol. 26 3883
[9] [10] [11] Komine T, Nakagawa M 2004 IEEE Trans. Consum. Electron 50 100
[12] [13] Komine T, Nakagawa M 2003 IEEE Trans. Consum. Electron 49 71
[14] [15] Wang D Y, Sun H Q, Xie X Y, Zhang P J 2012 Acta Phys. Sin. 61 227303 (in Chinese) [王度阳, 孙慧卿, 解晓宇, 张盼君 2012 61 227303]
[16] [17] Liu H Z, Ji Y F 2013 Acta Phys. Sin. 62 114203 (in Chinese) [刘宏展, 纪越峰 2013 62 114203]
[18] [19] Moreno I, Avendao M, Tzonchev R I 2006 Appl. Opt. 45 2265
[20] [21] Moreno I, Muoz J 2007 Opt. Eng. 46 033001
[22] Moreno I, Sun C C 2008 Proc. SPIE 7058 70580R
[23] [24] [25] Ding D Q, Ke X Z, Li J X 2011 J. Appl. Sci. 29 238 (in Chinese) [丁德强, 柯熙政, 李建勋 2011 应用科学学报 29 238]
Catalog
Metrics
- Abstract views: 6374
- PDF Downloads: 339
- Cited By: 0