-
Photodetachment of hydrogen negative ion near a dielectric sphere has been studied by using the image method combined with the semiclassical closed orbit theory. Firstly, we analyze the image charge distribution of the detached electron near the dielectric sphere; then we put forward the Hamiltonian for this system. By solving the Hamiltonian canonical equations, we can find the closed orbits of the detached electrons moving near the dielectric sphere. With the help of the semiclassical closed orbit theory, we derive the formula for calculating the photodetachment cross section of this system. Then we can calculate and analyze the photodetachment cross section. Calculated results suggest that the photodetachment cross section of the hydrogen negative ion near a dielectric sphere is not only related to the photon energy, but also the dielectric constant of the sphere. For a given dielectric sphere, with the increase of photon energy, the oscillating amplitude in the photodetachment cross section decreases while the oscillation frequency increases. When the photon energy is increased to a critical value, the oscillating structures in the cross section disappear. In addition, with the increase in the dielectric constant of the dielectric sphere, the oscillating structure in the photodetachment cross section becomes much more complicated. When the dielectric constant is increased to infinity, the photodetachment cross section of this system is consistent with the photodetachment cross section of the hydrogen negative ion near a metal sphere. Therefore, we can control the photodetachment cross section of the hydrogen negative ion near a dielectric sphere by changing the photon energy and the dielectric constant. Our study may provide some theoretical guidance and reference values for the experimental research of photodetachment of negative ion near the dielectric sphere.
[1] Bryant H C 1987 Phys. Rev. Lett. 58 2412
[2] Rau A P R, Wong H 1988 Phys. Rev. A 37 632
[3] Du M L 1988 Phys. Rev. A 38 5609
[4] Du M L 2004 Phys. Rev. A 70 055402
[5] Liu Z Y, Wang D H, Lin S L, Shi W Z 1997 Phys. Rev. A 54 4078
[6] Liu Z Y, Wang D H 1997 Phys. Rev. A 55 4605
[7] Liu Z Y, Wang D H 1997 Phys. Rev. A 56 4605
[8] Peters A D, Delos J B 1993 Phys. Rev. A 47 3020
[9] Peters A D, Delos J B, Jaffe C, Delos J B 1997 Phys. Rev. A 56 331
[10] Yang G C, Zheng Y Z, Chi X X 2006 J. Phys. B: At. Mol. Opt. Phys. 39 1855
[11] Yang G C, Zheng Y Z, Chi X X 2006 Phys. Rev. A 73 043413
[12] Afaq A, Du M L 2007 J. Phys. B: At. Mol. Opt. Phys. 40 1309
[13] Rui K K, Yang G C 2009 Surf. Sci. 603 632
[14] Zhao H J, Du M L 2009 Phys. Rev. A 79 023408
[15] Wang D H, Tang T T, Wang S S 2010 J. Electron. Sepectrosc. 177 30
[16] Yang B C, Du M L 2010 J. Phys. B 43 035002
[17] Huang K Y, Wang D H 2010 Chin. Phys. B 19 063402
[18] Huang K Y, Wang D H 2010 Acta Phys. Sin. 59 932 (in Chinese) [黄凯云, 王德华 2010 59 932]
[19] Wang D H, Huang K Y 2010 Commun. Theor. Phys. 53 898
[20] Wang D H, Wang S S, Tang T T 2011 J. Phys. Soc. Jpn. 80 094301
[21] HanY, Wang L F, Ran S Y, Yang G C 2010 Physics B 405 3082
[22] Huang K Y, Wang D H 2010 J. Phys. Chem. C 114 8958
[23] Wang D H 2011 J. Appl. Phys. 109 014113
[24] Haneef M, Ahmad I, Afaq A, Rahman A 2011 J. Phys. B: At. Mol. Opt. Phys. 44 195004
[25] Li S S, Wang D H 2013 Acta Phys. Sin. 62 043201 (in Chinese) [李绍晟, 王德华 2013 62 043201]
[26] Li S S, Wang D H 2014 Chin. Phys. B 23 023402
[27] Wang D H, Li S S 2012 J. Phys. Soc. Jpn. 81 074301
[28] Messina R 2002 J. Chem. Phys. 117 11062
-
[1] Bryant H C 1987 Phys. Rev. Lett. 58 2412
[2] Rau A P R, Wong H 1988 Phys. Rev. A 37 632
[3] Du M L 1988 Phys. Rev. A 38 5609
[4] Du M L 2004 Phys. Rev. A 70 055402
[5] Liu Z Y, Wang D H, Lin S L, Shi W Z 1997 Phys. Rev. A 54 4078
[6] Liu Z Y, Wang D H 1997 Phys. Rev. A 55 4605
[7] Liu Z Y, Wang D H 1997 Phys. Rev. A 56 4605
[8] Peters A D, Delos J B 1993 Phys. Rev. A 47 3020
[9] Peters A D, Delos J B, Jaffe C, Delos J B 1997 Phys. Rev. A 56 331
[10] Yang G C, Zheng Y Z, Chi X X 2006 J. Phys. B: At. Mol. Opt. Phys. 39 1855
[11] Yang G C, Zheng Y Z, Chi X X 2006 Phys. Rev. A 73 043413
[12] Afaq A, Du M L 2007 J. Phys. B: At. Mol. Opt. Phys. 40 1309
[13] Rui K K, Yang G C 2009 Surf. Sci. 603 632
[14] Zhao H J, Du M L 2009 Phys. Rev. A 79 023408
[15] Wang D H, Tang T T, Wang S S 2010 J. Electron. Sepectrosc. 177 30
[16] Yang B C, Du M L 2010 J. Phys. B 43 035002
[17] Huang K Y, Wang D H 2010 Chin. Phys. B 19 063402
[18] Huang K Y, Wang D H 2010 Acta Phys. Sin. 59 932 (in Chinese) [黄凯云, 王德华 2010 59 932]
[19] Wang D H, Huang K Y 2010 Commun. Theor. Phys. 53 898
[20] Wang D H, Wang S S, Tang T T 2011 J. Phys. Soc. Jpn. 80 094301
[21] HanY, Wang L F, Ran S Y, Yang G C 2010 Physics B 405 3082
[22] Huang K Y, Wang D H 2010 J. Phys. Chem. C 114 8958
[23] Wang D H 2011 J. Appl. Phys. 109 014113
[24] Haneef M, Ahmad I, Afaq A, Rahman A 2011 J. Phys. B: At. Mol. Opt. Phys. 44 195004
[25] Li S S, Wang D H 2013 Acta Phys. Sin. 62 043201 (in Chinese) [李绍晟, 王德华 2013 62 043201]
[26] Li S S, Wang D H 2014 Chin. Phys. B 23 023402
[27] Wang D H, Li S S 2012 J. Phys. Soc. Jpn. 81 074301
[28] Messina R 2002 J. Chem. Phys. 117 11062
Catalog
Metrics
- Abstract views: 5425
- PDF Downloads: 364
- Cited By: 0