Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fault-tolerantly implementing dense rotation operations based on non-stabilizer states

Wu Xiang-Yan Xu Yan-Ling Yu Ya-Fei Zhang Zhi-Ming

Citation:

Fault-tolerantly implementing dense rotation operations based on non-stabilizer states

Wu Xiang-Yan, Xu Yan-Ling, Yu Ya-Fei, Zhang Zhi-Ming
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Based on the quantum error-correction codes and concatenation, quantum logical gates can be implemented transversally, which is called the fault-tolerant quantum computation. Clifford gates can be directly and fault-tolerantly performed, but they cannot reach universal quantum computation. How to implement the non-Clifford gate fault-tolerantly is a vital technique in fault-tolerant universal quantum computation. Here the magic state is selected to help the implementing of the non-Clifford gate transversally. Based on the non-stabilizer state cos θi|0>+sinθi|1>, circuits which can execute 2θi rotation around X-axis and Z-axis fault-tolerantly are proposed. Then new non-stabilizer states in this form are developed and produced from the distilled magic state. By using these states, a number of non-Clifford gates can be performed transversally, which makes profound implication in fault-tolerant quantum computation. We calculate the number of the non-stabilizer states needed for simulating the desired rotation operations, which is less than that in previous protocols.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61378012, 60978009), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20124407110009), the National Basic Research Program of China (Grant Nos. 2011CBA00200, 2013CB921804) and Scientific Research Staring Foundation for the Returned Overseas Chinese Scholars, Ministry of Education of China.
    [1]

    Sun J, Lu S F, Liu F, Yang L P 2012 Chin. Phys. B 21 010306

    [2]

    Chen W, Xue Z Y, Wang Z D, Shen R 2014 Chin. Phys. B 23 030309

    [3]

    Li T, Bao W S, Lin W Q, Zhang H, Fu X Q 2014 Chin. Phys. Lett. 31 050301

    [4]

    Li H Y, Wu C W, Chen Y B, Lin Y G, Chen P X, Li C Z 2013 Chin. Phys. B 22 110305

    [5]

    Wang X X, Zhang J Q, Yu Y F, Zhang Z M 2011 Chin. Phys. B 20 110306

    [6]

    Bacon D, Kempe J, Lidar D A, Whaley K B 2000 Phys. Rev. Lett. 85 1758

    [7]

    Zhang Q, Zhang E Y, Tang C J 2002 Acta Phys. Sin. 51 1675 (in Chinese) [张权, 张尔扬, 唐朝京 2002 51 1675]

    [8]

    Raussendorf R, Harrington J, Goyal K 2007 New J. Phys. 9 199

    [9]

    Gottesman D 1997 Ph. D. Dissertation (California: Caltech)

    [10]

    Li Z, Xing L J 2013 Acta Phys. Sin. 62 130306 (in Chinese) [李卓, 刑莉娟 2013 62 130306]

    [11]

    Xiao F Y, Chen H W 2010 Acta Phys. Sin. 60 080303 (in Chinese) [肖芳英, 陈汉武 2010 60 080303]

    [12]

    Nielsen M A , Chuang I L 2000 Quantum Computation and Quantum Information (Vol.1) (Cambridge, England: Cambridge University Press) p179

    [13]

    Eastin B 2013 Phys. Rev. A 87 032321

    [14]

    Landahl A J, Cesare C 2013 Preprint arXiv: 1302.3240

    [15]

    Jochym-O'connor T, Laflamme R 2014 Phys. Rev. Lett. 112 010505

    [16]

    Paetznick A, Reichardt B W 2013 Phys. Rev. Lett. 111 090505

    [17]

    Bravyi S, Kitaev A 2005 Phys. Rev. A 71 022316

    [18]

    Duclos-Cianci G, Svore K M 2013 Phys. Rev. A 88 042325

    [19]

    Howard M, Wallman J, Veitch V, Emerson J 2014 Nature 510 351

    [20]

    Jochym-O'connor T, Yu Y, Helou B, Laflamme R 2013 Quantum Inf. Comput. 13 361

    [21]

    Yu Y F, Zhang Z M 2013 Acta Sin. Quantum Opt. 19 330 (in Chinese) [於亚飞, 张智明 2013 量子光学学报 19 330]

    [22]

    Reichardt B W 2005 Quantum Inf. Process 4 251

    [23]

    Campbell E T, Anwar H, Browne D E 2012 Phys. Rev. X 2 041021

    [24]

    Bravyi S, Haah J 2012 Phys. Rev. A 86 052329

    [25]

    Anwar H, Campbell E T, Browne D E 2012 New J. Phys. 14 063006

    [26]

    Meier A M, Eastin B, Knill E 2013 Quantum Inf. Comput. 13 195

    [27]

    Reichardt B W 2009 Quantum Inf. Comput. 9 1030

    [28]

    Jones C 2013 Phys. Rev. A 87 042305

    [29]

    Campbell E T, Browne D E 2010 Phys. Rev. Lett. 104 030503

    [30]

    Jones N C, Van M R, Fowler A G, McMahon P L, Kim J, Ladd T D, Yamamoto Y 2012 Phys. Rev. X 2 031007

    [31]

    Fowler A G, Mariantoni M, Martinis J M, Cleland A N 2012 Phys. Rev. A 86 032324

    [32]

    Sun J G, He Y G 2003 J. Software 14 334 (in Chinese) [孙吉贵, 何雨果 2003 软件学报 14 334]

    [33]

    Grover L K 1996 Proc. 28th ACM Symp. Theory of Comp. May 22-24, 1996, p212-219

    [34]

    Bocharov A, Svore K M 2012 Phys. Rev. Lett. 109 190501

  • [1]

    Sun J, Lu S F, Liu F, Yang L P 2012 Chin. Phys. B 21 010306

    [2]

    Chen W, Xue Z Y, Wang Z D, Shen R 2014 Chin. Phys. B 23 030309

    [3]

    Li T, Bao W S, Lin W Q, Zhang H, Fu X Q 2014 Chin. Phys. Lett. 31 050301

    [4]

    Li H Y, Wu C W, Chen Y B, Lin Y G, Chen P X, Li C Z 2013 Chin. Phys. B 22 110305

    [5]

    Wang X X, Zhang J Q, Yu Y F, Zhang Z M 2011 Chin. Phys. B 20 110306

    [6]

    Bacon D, Kempe J, Lidar D A, Whaley K B 2000 Phys. Rev. Lett. 85 1758

    [7]

    Zhang Q, Zhang E Y, Tang C J 2002 Acta Phys. Sin. 51 1675 (in Chinese) [张权, 张尔扬, 唐朝京 2002 51 1675]

    [8]

    Raussendorf R, Harrington J, Goyal K 2007 New J. Phys. 9 199

    [9]

    Gottesman D 1997 Ph. D. Dissertation (California: Caltech)

    [10]

    Li Z, Xing L J 2013 Acta Phys. Sin. 62 130306 (in Chinese) [李卓, 刑莉娟 2013 62 130306]

    [11]

    Xiao F Y, Chen H W 2010 Acta Phys. Sin. 60 080303 (in Chinese) [肖芳英, 陈汉武 2010 60 080303]

    [12]

    Nielsen M A , Chuang I L 2000 Quantum Computation and Quantum Information (Vol.1) (Cambridge, England: Cambridge University Press) p179

    [13]

    Eastin B 2013 Phys. Rev. A 87 032321

    [14]

    Landahl A J, Cesare C 2013 Preprint arXiv: 1302.3240

    [15]

    Jochym-O'connor T, Laflamme R 2014 Phys. Rev. Lett. 112 010505

    [16]

    Paetznick A, Reichardt B W 2013 Phys. Rev. Lett. 111 090505

    [17]

    Bravyi S, Kitaev A 2005 Phys. Rev. A 71 022316

    [18]

    Duclos-Cianci G, Svore K M 2013 Phys. Rev. A 88 042325

    [19]

    Howard M, Wallman J, Veitch V, Emerson J 2014 Nature 510 351

    [20]

    Jochym-O'connor T, Yu Y, Helou B, Laflamme R 2013 Quantum Inf. Comput. 13 361

    [21]

    Yu Y F, Zhang Z M 2013 Acta Sin. Quantum Opt. 19 330 (in Chinese) [於亚飞, 张智明 2013 量子光学学报 19 330]

    [22]

    Reichardt B W 2005 Quantum Inf. Process 4 251

    [23]

    Campbell E T, Anwar H, Browne D E 2012 Phys. Rev. X 2 041021

    [24]

    Bravyi S, Haah J 2012 Phys. Rev. A 86 052329

    [25]

    Anwar H, Campbell E T, Browne D E 2012 New J. Phys. 14 063006

    [26]

    Meier A M, Eastin B, Knill E 2013 Quantum Inf. Comput. 13 195

    [27]

    Reichardt B W 2009 Quantum Inf. Comput. 9 1030

    [28]

    Jones C 2013 Phys. Rev. A 87 042305

    [29]

    Campbell E T, Browne D E 2010 Phys. Rev. Lett. 104 030503

    [30]

    Jones N C, Van M R, Fowler A G, McMahon P L, Kim J, Ladd T D, Yamamoto Y 2012 Phys. Rev. X 2 031007

    [31]

    Fowler A G, Mariantoni M, Martinis J M, Cleland A N 2012 Phys. Rev. A 86 032324

    [32]

    Sun J G, He Y G 2003 J. Software 14 334 (in Chinese) [孙吉贵, 何雨果 2003 软件学报 14 334]

    [33]

    Grover L K 1996 Proc. 28th ACM Symp. Theory of Comp. May 22-24, 1996, p212-219

    [34]

    Bocharov A, Svore K M 2012 Phys. Rev. Lett. 109 190501

  • [1] Wu Xiao-Dong, Huang Duan. Practical continuous variable quantum secret sharing scheme based on non-ideal quantum state preparation. Acta Physica Sinica, 2024, 73(2): 020304. doi: 10.7498/aps.73.20230138
    [2] Jiang Shi-Min, Jia Xin-Yan, Fan Dai-He. Quantum non-local correlation testing of Werner state in non-Markovian environment. Acta Physica Sinica, 2024, 73(16): 160301. doi: 10.7498/aps.73.20240450
    [3] Chen Zi-Jie, Pan Xiao-Xuan, Hua Zi-Yue, Wang Wei-Ting, Ma Yu-Wei, Li Ming, Zou Xu-Bo, Sun Lu-Yan, Zou Chang-Ling. Advances in quantum error correction based on superconducting quantum systems. Acta Physica Sinica, 2022, 71(24): 240305. doi: 10.7498/aps.71.20221824
    [4] Wang Ming-Yu, Wang Xin-De, Ruan Dong, Long Gui-Lu. Quantum direct portation. Acta Physica Sinica, 2021, 70(19): 190301. doi: 10.7498/aps.70.20210837
    [5] Tian Yu-Ling, Feng Tian-Feng, Zhou Xiao-Qi. Collaborative quantum computation with redundant graph state. Acta Physica Sinica, 2019, 68(11): 110302. doi: 10.7498/aps.68.20190142
    [6] Deng Fu-Guo, Li Xi-Han, Li Tao. Quantum error rejection and fault tolerant quantum communication. Acta Physica Sinica, 2018, 67(13): 130301. doi: 10.7498/aps.67.20180598
    [7] Sun Wei, Yin Hua-Lei, Sun Xiang-Xiang, Chen Teng-Yun. Nonorthogonal decoy-state quantum key distribution based on coherent-state superpositions. Acta Physica Sinica, 2016, 65(8): 080301. doi: 10.7498/aps.65.080301
    [8] Ren Bao-Cang, Deng Fu-Guo. Hyper-parallel photonic quantum computation and manipulation on hyperentangled states. Acta Physica Sinica, 2015, 64(16): 160303. doi: 10.7498/aps.64.160303
    [9] Sun Xin-Mei, Zha Xin-Wei, Qi Jian-Xia, Lan Qian. High-efficient quantum state sharing via non-maximally five-qubit cluster state. Acta Physica Sinica, 2013, 62(23): 230302. doi: 10.7498/aps.62.230302
    [10] Zhou Yuan-Yuan, Zhou Xue-Jun. Nonorthogonal passive decoy-state quantum key distribution with a weak coherent state source. Acta Physica Sinica, 2011, 60(10): 100301. doi: 10.7498/aps.60.100301
    [11] Xiao Fang-Ying, Chen Han-Wu. Error correction and decoding for quantum stabilizer codes. Acta Physica Sinica, 2011, 60(8): 080303. doi: 10.7498/aps.60.080303
    [12] Li Zun-Mao, Xiong Zhuang, Dai Li-Li. Calculation of geometrically active atomic state. Acta Physica Sinica, 2010, 59(11): 7824-7829. doi: 10.7498/aps.59.7824
    [13] Zhang Guo-Feng, Xing Zhao. Swap operation in a two-qubit anisotropy XYZ model in the presence of an inhomogeneous magnetic field. Acta Physica Sinica, 2010, 59(3): 1468-1472. doi: 10.7498/aps.59.1468
    [14] Chen Li-Bing, Tan Peng, Dong Shao-Guang, Lu Hong. Controlled implementation of a nonlocal and open-target destination quantum controlled-Not (CNOT) gate using partially entangled pairs. Acta Physica Sinica, 2009, 58(10): 6772-6778. doi: 10.7498/aps.58.6772
    [15] Ma Rui-Qiong, Li Yong-Fang, Shi Jian. Measurement of quantum states with incoherent light. Acta Physica Sinica, 2008, 57(9): 5593-5599. doi: 10.7498/aps.57.5593
    [16] Liu Chuan-Long, Zheng Yi-Zhuang. Teleportation of entangled coherent state through bipartite entangled quantum channels. Acta Physica Sinica, 2006, 55(12): 6222-6228. doi: 10.7498/aps.55.6222
    [17] Zeng Gui-Hua, Zhu Hong-Wen. . Acta Physica Sinica, 2002, 51(4): 727-730. doi: 10.7498/aps.51.727
    [18] Zhang Quan, Zhang Er-Yang, Tang Chao-Jing. . Acta Physica Sinica, 2002, 51(8): 1675-1683. doi: 10.7498/aps.51.1675
    [19] FANG XI-MING, ZHU XI-WEN, MENG MANG, GAO KE-LIN, SHI LEI. PREPARATION OF PSEUDO-PURE STATES FOR NMR QUANTUM COMPUTATION. Acta Physica Sinica, 1999, 48(8): 1405-1411. doi: 10.7498/aps.48.1405
    [20] XIE FANG-QING, HUANG MING-BAO, XIA YU-XING. A STUDY OF ArCN EXCIPLEX (I)——ROHF CALCULATSONS OF ELECTRONIC STATES. Acta Physica Sinica, 1994, 43(3): 351-355. doi: 10.7498/aps.43.351
Metrics
  • Abstract views:  5649
  • PDF Downloads:  360
  • Cited By: 0
Publishing process
  • Received Date:  23 June 2014
  • Accepted Date:  08 September 2014
  • Published Online:  05 November 2014

/

返回文章
返回
Baidu
map