-
Combined with the Lossy Drude-Lorentz dispersive model, a symplectic finite-difference time-domain (SFDTD) algorithm is proposed to deal with the double dispersive model. Based on matrix splitting, symplectic integrator propagator and the auxiliary differential equation (ADE) technique, with the rigorous and artful formula derivation, the algorithm is constructed, and detailed formulations are provided. Excellent agreement is achieved between the SFDTD-calculated and exact theoretical results when transmittance coefficient in simulation of double dispersive film in one dimension is calculated. As to numerical results for a more realistic structure in three dimensions, the simulation of periodic arrays of silver split-ring resonators using the Drude dispersion model are also included. The transmittance, reflectance, and absorptance of the structure are presented to test the efficiency of the proposed method. Our method can be used as an efficiency simulation tool for checking the experimental data.
-
Keywords:
- Lossy Drude-Lorentz dispersive model /
- symplectic finite-difference time-domain /
- double dispersive model /
- matrix splitting
[1] Ai F, Bai Y, Xu F, Qiao L J, Zhou J 2008 Acta Phys. Sin. 57 4189 (in Chinese)[艾芬, 白洋, 徐芳, 乔利杰, 周济 2008 57 4189]
[2] Liu R, Shi J H, Plum E, Fedotov V, Zheludev N 2012 Acta Phys. Sin. 61 154101 (in Chinese)[刘冉, 史金辉, E. Plum, V.A.Fedotov, N.I.Zheludev 2012 61 154101]
[3] Wang W S, Zhang L W, Ran J, Zhang Y W 2013 Acta Phys. Sin. 62 184203 (in Chinese)[王五松, 张利伟, 冉佳, 张冶文2013 62 184203]
[4] Taflove A, Hagness S C 2005 Computational Electrodynamics: The Finite-Difference Time-Domain Method, third ed. (Boston: Artech House)
[5] Sullivan D M, Hagness S C 2005 Electromagnetic Simulation Using the FDTD Method (New York: IEEE Press)
[6] Prokopidis K P, Tsiboukis T D 2007 Appl. Comput. Eletron. 22 287
[7] Deinega A, John S 2012 Opt. Lett. 37 112
[8] Vial A, Grimault A-S, Macías D, Barchiesi D, Chapelle M L 2005 Phys. Rev. B 71 085416
[9] Sha W, Huang Z X, Chen M S, Wu X L 2008 IEEE Trans. Antennas Propag. 56 493
[10] Hirono T, Lui W, Seki S, Yoshikuni Y 2001 IEEE Trans. Microw. Thory Tech. 49 1640
[11] Wang H, Huang Z X, Wu X L, Ren X G 2011 Chin. Phys. B 20 114701
[12] Ren X G, Huang Z X, Wu X L, Lu S L, Wang H, Wu L, Li S 2012 Comput. Phys. Commun. 183 1192
-
[1] Ai F, Bai Y, Xu F, Qiao L J, Zhou J 2008 Acta Phys. Sin. 57 4189 (in Chinese)[艾芬, 白洋, 徐芳, 乔利杰, 周济 2008 57 4189]
[2] Liu R, Shi J H, Plum E, Fedotov V, Zheludev N 2012 Acta Phys. Sin. 61 154101 (in Chinese)[刘冉, 史金辉, E. Plum, V.A.Fedotov, N.I.Zheludev 2012 61 154101]
[3] Wang W S, Zhang L W, Ran J, Zhang Y W 2013 Acta Phys. Sin. 62 184203 (in Chinese)[王五松, 张利伟, 冉佳, 张冶文2013 62 184203]
[4] Taflove A, Hagness S C 2005 Computational Electrodynamics: The Finite-Difference Time-Domain Method, third ed. (Boston: Artech House)
[5] Sullivan D M, Hagness S C 2005 Electromagnetic Simulation Using the FDTD Method (New York: IEEE Press)
[6] Prokopidis K P, Tsiboukis T D 2007 Appl. Comput. Eletron. 22 287
[7] Deinega A, John S 2012 Opt. Lett. 37 112
[8] Vial A, Grimault A-S, Macías D, Barchiesi D, Chapelle M L 2005 Phys. Rev. B 71 085416
[9] Sha W, Huang Z X, Chen M S, Wu X L 2008 IEEE Trans. Antennas Propag. 56 493
[10] Hirono T, Lui W, Seki S, Yoshikuni Y 2001 IEEE Trans. Microw. Thory Tech. 49 1640
[11] Wang H, Huang Z X, Wu X L, Ren X G 2011 Chin. Phys. B 20 114701
[12] Ren X G, Huang Z X, Wu X L, Lu S L, Wang H, Wu L, Li S 2012 Comput. Phys. Commun. 183 1192
Catalog
Metrics
- Abstract views: 7598
- PDF Downloads: 700
- Cited By: 0