-
Several typical loads are applied to muck specimens to simulate muck ground treatment conditions. Then tests of pore structural distribution of the soil are performed by the method of nuclear magnetic resonance (NMR), for seeking variation of their internal structure under the typical load level and rate, and thus to further determine the muck ground reinforcement mechanism and responses in micro-structure aspect. The results suggest that: (1) the max-pore decreases under a certain load, and the reduction increases with load level; nevertheless, when the impact load reaches a considerable level, both the max-pore and small-pore decrease; (2) the confining stiffness effect of constraint samples induces a decrease in the proportion of large-pore; (3) at a certain load level (680 kPa or less), the loading rate is the key factor determining the relative proportion of maximum void ratio: smaller lading rate will make the void ratio increase, larger lading rate will make the void ratio reduced, and its boundary value is between > 0.8 MPa/s and ≤ 1.6 MPa/s; (4) with a certain load level and rate, an the number of impact times increses, namely as the total energy is enhanced, the large-pore as well as the max-pore considerably decreases; however, this effect will be reduced when the interval time is short and as the number of impact times increases further. i.e. the large-pore effectively decreases. There exists a suitable value of the number of impact times for the muck specimens. These results reflect the rule of different loading effects in the micro of micro fine structue and provide a basis for the design and construction optimization for muck ground improvement.
[1] Li Z M 2011 Strengthening and Quality Control of Soft Soil Foundation (Beijing: China Building Industry Press) p185 (in Chinese) [李彰明 2011 软土地基加固与质量控制 (北京: 中国建筑工业出版社)第185页]
[2] Mitchell J K, Soga K 2005 Fundamentals of Soil Behavior (3rd Ed.) (New Jersey: John Wiley & Sons) pp83-85
[3] Romero E, Simms P H 2008 J. Geotech. Geoenviron. Eng. 26 705
[4] Cheng X H, Janssen H Barends F B J, den Haan E J 2004 Appl. Clay. Sci. 25 179
[5] Meng Q S, Yang C 2008 Rock Soil Mech. 29 1759 (in Chinese) [孟庆山, 杨超 2008 岩土力学 29 1759]
[6] Bao S L, Du J, Gao S 2013 Acta Phys. Sin. 62 088701 (in Chinese) [包尚联, 杜江, 高嵩 2013 62 088701]
[7] Shen G P, Cai C B, Cai S H, Chen Z 2011 Chin. Phys. B 20 103301
[8] Ren T T, Luo J, Sun X P, Zhan M S 2009 Chin. Phys. B 18 4711
[9] Xu J W, Chen Q H 2012 Chin. Phys. B 21 040302
[10] Jiang F Y, Wang N, Jin Y R, Deng H, Tian Y, Lang P L, Li J, Chen Y F, Zheng D N 2013 Chin. Phys. B 22 047401
[11] Ma L, Zhang J S, Wang D M, He J B, Xia T L, Chen G F, Yu W Q 2012 Chin. Phys. Lett. 29 067402
[12] Borgia G C, Fantazzini P, Halse M R, Strange J 1996 Magn. Reson. Imaging 14 697
[13] Matteson A, Tomanic J P, Herron M M, Allen D F, Kenyon W E 2000 SPE Reserv. Eval. Eng. 3 408
[14] Deng K J, Xie R H 2010 Theory and Application of Nuclear Magnetic Resonance Logging (Dongying: China University of Petroleum Press) (in Chinese) [邓克俊著, 谢然红 2010 核磁共振测井理论及应用 (东营: 中国石油大学出版社)]
[15] Li ZM, Zeng W X, Gao ML 2014 Acta Phys. Sin. 63 018202 (in Chinese) [李彰明, 曾文秀, 高美连 2014 63 018202]
[16] Zhang W L 2010 Ph. D. Dissertation (Shanghai: East China Normal University) (in Chinese) [张伟禄 2010博士学位论文(上海: 华东师范大学)]
[17] Wang Z D, Xiao L Z, Liu T Y 2003 Sci. China (Ser. G) 33 323 (in Chinese) [王忠东, 肖立志, 刘堂宴 2003 中国科学(G辑) 33 323]
-
[1] Li Z M 2011 Strengthening and Quality Control of Soft Soil Foundation (Beijing: China Building Industry Press) p185 (in Chinese) [李彰明 2011 软土地基加固与质量控制 (北京: 中国建筑工业出版社)第185页]
[2] Mitchell J K, Soga K 2005 Fundamentals of Soil Behavior (3rd Ed.) (New Jersey: John Wiley & Sons) pp83-85
[3] Romero E, Simms P H 2008 J. Geotech. Geoenviron. Eng. 26 705
[4] Cheng X H, Janssen H Barends F B J, den Haan E J 2004 Appl. Clay. Sci. 25 179
[5] Meng Q S, Yang C 2008 Rock Soil Mech. 29 1759 (in Chinese) [孟庆山, 杨超 2008 岩土力学 29 1759]
[6] Bao S L, Du J, Gao S 2013 Acta Phys. Sin. 62 088701 (in Chinese) [包尚联, 杜江, 高嵩 2013 62 088701]
[7] Shen G P, Cai C B, Cai S H, Chen Z 2011 Chin. Phys. B 20 103301
[8] Ren T T, Luo J, Sun X P, Zhan M S 2009 Chin. Phys. B 18 4711
[9] Xu J W, Chen Q H 2012 Chin. Phys. B 21 040302
[10] Jiang F Y, Wang N, Jin Y R, Deng H, Tian Y, Lang P L, Li J, Chen Y F, Zheng D N 2013 Chin. Phys. B 22 047401
[11] Ma L, Zhang J S, Wang D M, He J B, Xia T L, Chen G F, Yu W Q 2012 Chin. Phys. Lett. 29 067402
[12] Borgia G C, Fantazzini P, Halse M R, Strange J 1996 Magn. Reson. Imaging 14 697
[13] Matteson A, Tomanic J P, Herron M M, Allen D F, Kenyon W E 2000 SPE Reserv. Eval. Eng. 3 408
[14] Deng K J, Xie R H 2010 Theory and Application of Nuclear Magnetic Resonance Logging (Dongying: China University of Petroleum Press) (in Chinese) [邓克俊著, 谢然红 2010 核磁共振测井理论及应用 (东营: 中国石油大学出版社)]
[15] Li ZM, Zeng W X, Gao ML 2014 Acta Phys. Sin. 63 018202 (in Chinese) [李彰明, 曾文秀, 高美连 2014 63 018202]
[16] Zhang W L 2010 Ph. D. Dissertation (Shanghai: East China Normal University) (in Chinese) [张伟禄 2010博士学位论文(上海: 华东师范大学)]
[17] Wang Z D, Xiao L Z, Liu T Y 2003 Sci. China (Ser. G) 33 323 (in Chinese) [王忠东, 肖立志, 刘堂宴 2003 中国科学(G辑) 33 323]
Catalog
Metrics
- Abstract views: 5873
- PDF Downloads: 478
- Cited By: 0