-
To better explore the robustness against cascading failures on complex networks, according to the redistribution rule of the real networks always lie between global preferential rule and local preferential rule or between even shared rule and extremely heterogeneous rule. A new cascading model is proposed based on a tunable load redistribution model. It can tune the load redistribution range and the redistribution heterogeneity of extra load respectively by a redistribution range coefficient and a redistribution heterogeneity coefficient. With this model, we further investigate cascading failures on scale-free networks in terms of numerical simulation and theoretical analysis respectively. Numerical simulation and analytic results show that the model can achieve better robustness against cascading failure than the previous model by adjusting the redistribution range and heterogeneity.
-
Keywords:
- complex network /
- cascading failure /
- load redistribution /
- robustness
[1] Xiao Y D, Lao S Y, Hou L L, Bai L 2013 Acta Phys. Sin. 62 180201 (in Chinese) [肖延东, 老松杨, 侯绿林, 白亮 2013 62 180201]
[2] Xia Y X, Fan J, Hill D 2010 Phys. A 389 1281
[3] Sergey V B, Roni P, Gerald P, Eugene Stanley H, Shlomo H 2010 Nature 464 08932
[4] Wang J W 2012 Phys. A 391 4004
[5] Wang J W 2012 Complexity 17 17
[6] Crucitti P, Latora V, Marchiori M 2004 Phys. Rev. E 69 045104
[7] Motter A E 2004 Phys. Rev. Lett. 93 098701
[8] Motter A E, Lai Y C 2002 Phys. Rev. E 66 065102
[9] Wu Z H, Fang H J 2008 Chin. Phys. Lett. 25 3822
[10] Zheng J F, Gao Z Y, Fu B B, Li F 2009 Chin. Phys. B 18 4754
[11] Hu K, Hu T, Tang Y 2010 Chin. Phys. B 19 080206
[12] Wang B, Kim B J 2007 Euro. Phys. Lett 78 48001
[13] Li P, Wang B H, Sun H 2008 Euro. Phys. J. B 62
[14] Dobson I, Carreras B A, Lynch V E 2007 Chaos 2 026103
[15] Kim D H, Kim B J, Jeong H 2005 Phys. Rev. Lett. 94 025501
[16] Jorg L, Jakob B 2010 Phys. Rev. E 81 031129
[17] Wang W X, Chen G R 2008 Phys. Rev. E 77 026101
[18] Wu Z X, G. Peng, Wang W X, Chan S, Wong E E M 2008 J. Stat. Mech. P 05013
[19] Wang J W, Rong L L 2009 Acta Phys. Sin. 58 3714 (in Chinese) [王建伟, 荣莉莉 2009 58 3714]
[20] Wang J W, Rong L L 2009 Phys. A 388 1289
[21] Wang J W, Rong L L, Zhang L, Zhang Z Z 2008 Phys. A 387 6671
[22] Wang J W, Rong L L 2009 Safety Sci. 47 1332
[23] Wang J W, Rong L L 2011 Safety Sci. 49 807
[24] Chen S M, Pang S P, Zou X Q 2013 Chin. Phys. B 22 058901
[25] Barabási A L, Albert R 1999 Science 286 509
-
[1] Xiao Y D, Lao S Y, Hou L L, Bai L 2013 Acta Phys. Sin. 62 180201 (in Chinese) [肖延东, 老松杨, 侯绿林, 白亮 2013 62 180201]
[2] Xia Y X, Fan J, Hill D 2010 Phys. A 389 1281
[3] Sergey V B, Roni P, Gerald P, Eugene Stanley H, Shlomo H 2010 Nature 464 08932
[4] Wang J W 2012 Phys. A 391 4004
[5] Wang J W 2012 Complexity 17 17
[6] Crucitti P, Latora V, Marchiori M 2004 Phys. Rev. E 69 045104
[7] Motter A E 2004 Phys. Rev. Lett. 93 098701
[8] Motter A E, Lai Y C 2002 Phys. Rev. E 66 065102
[9] Wu Z H, Fang H J 2008 Chin. Phys. Lett. 25 3822
[10] Zheng J F, Gao Z Y, Fu B B, Li F 2009 Chin. Phys. B 18 4754
[11] Hu K, Hu T, Tang Y 2010 Chin. Phys. B 19 080206
[12] Wang B, Kim B J 2007 Euro. Phys. Lett 78 48001
[13] Li P, Wang B H, Sun H 2008 Euro. Phys. J. B 62
[14] Dobson I, Carreras B A, Lynch V E 2007 Chaos 2 026103
[15] Kim D H, Kim B J, Jeong H 2005 Phys. Rev. Lett. 94 025501
[16] Jorg L, Jakob B 2010 Phys. Rev. E 81 031129
[17] Wang W X, Chen G R 2008 Phys. Rev. E 77 026101
[18] Wu Z X, G. Peng, Wang W X, Chan S, Wong E E M 2008 J. Stat. Mech. P 05013
[19] Wang J W, Rong L L 2009 Acta Phys. Sin. 58 3714 (in Chinese) [王建伟, 荣莉莉 2009 58 3714]
[20] Wang J W, Rong L L 2009 Phys. A 388 1289
[21] Wang J W, Rong L L, Zhang L, Zhang Z Z 2008 Phys. A 387 6671
[22] Wang J W, Rong L L 2009 Safety Sci. 47 1332
[23] Wang J W, Rong L L 2011 Safety Sci. 49 807
[24] Chen S M, Pang S P, Zou X Q 2013 Chin. Phys. B 22 058901
[25] Barabási A L, Albert R 1999 Science 286 509
Catalog
Metrics
- Abstract views: 6692
- PDF Downloads: 628
- Cited By: 0