-
Digital holographic microscopy plays a key role in micro-fluid measurement,and appears to be a strong contender as the next-generation technology for diagnostics of three-dimensional (3D) particle field. However, various recording parameters, such as the recording distance, the particle size, the wavelength, the size of the CCD chip, the pixel size and the particle concentration, will affect the results of the reconstruction, and may even determine the success or failure of a measurement. In this paper, we numerically investigate the effects of particle concentration and the volume depth on reconstruction efficiency, to evaluate the capability of digital holographic microscopy. Standard particle holograms with all known recording parameters are numerically generated by using a common procedure based on Lorenz-Mie scattering theory. Reconstruction of those holograms are then performed by a wavelet-transform based method. Results show that on the premise that the value of volume depth is 24 μm, the reconstruction efficiency Ep decreases quickly until particle concentration reaches 6.89×105 mm-3, and decreases slowly with the increase of particle concentration from 6.89×105 mm-3 to 55.08×105 mm-3. And on the premise that the value of particle concentration is 13.77×105 mm-3, the reconstruction efficiency Ep decreases linearly with the increase of the volume depth. When shadow density is constant, the variance of the construction efficiency presents a certain regularity. When the volume depth is small, the effect of particle concentration on the reconstruction efficiency becomes larger than one of volume depth, while it comes to a completely opposite result with a larger volume depth.
[1] Tanner D 2009 Microelectron. Reliab. 49 937
[2] Shi S, Chen D P, Jing Y P, Ou Y, Ye T C, Xu Q X 2010 Chin. Phys. B 19 76802
[3] Potrich C, Lunelli L, Forti S, Vozzi D, Pasquardini L, Vanzetti L, Panciatichi C, Anderle M, Pederzolli C 2010 Eur. Biophys. J. Biophy. 39 979
[4] Yao S, Tang X, Hsieh C, Alyousef Y, Vladimer M, Fedder G K, Amon C H 2006 Energy 31 636
[5] Langehanenberg P, Kemper B, Dirksen D, von Bally G 2008 Appl. Opt. 47 D176
[6] Mir T A, Shinohara H 2012 Anal. Biochem. 429 53
[7] Whalen S, Thompson M, Bahr D, Richards C, Richards R 2003 Sensor. Actuat. A Phys. 104 290
[8] Do K H, Jang S P 2010 Int. J. Heat Mass Trans. 53 2183
[9] Cai W, Wang F, van Veen A, Descorme C, Schuurman Y, Shen W, Mirodatos C 2010 Int. J. Hydrogen Energ. 35 1152
[10] Park J S, Choi C K, Kihm K D 2004 Exp. Fluids 37 105
[11] Elsinga G, Westerweel J, Scarano F, Novara M 2011 Exp. Fluids 50 825
[12] Wu Y C, Wu X C, Wang Z H, Chen L H, Cen K F 2011 Appl. Opt. 50 H22
[13] Garcia-Sucerquia J, Xu W, Jericho S K, Klages P, Jericho M H, Kreuzer H J 2006 Appl. Opt. 45 836
[14] Sheng J, Malkiel E, Katz J 2006 Appl. Opt. 45 3893
[15] Ferraro P, Coppola G, De Nicola S, Finizio A, Pierattini G 2003 Opt. Lett. 28 1257
[16] Wu Y L, Yang Y, Zhai H C, Ma Z H, Gai Q, Deng L J 2013 Acta Phys. Sin. 62 084203 (in Chinese) [吴永丽, 杨勇, 翟宏琛, 马忠洪, 盖琦, 邓丽军 2013 62 084203]
[17] Wang H Y, Liu F F, Liao W, Song X F, Yu M J, Liu Z Q 2013 Acta Phys. Sin. 62 054208 (in Chinese) [王华英, 刘飞飞, 廖薇, 宋修法, 于梦杰, 刘佐强 2013 62 054208]
[18] Wang H Y, Liu F F, Song X F, Liao W, Zhao B Q, Yu M J, Liu Z Q 2013 Acta Phys. Sin. 62 024207 (in Chinese) [王华英, 刘飞飞, 宋修法, 廖薇, 赵宝群, 于梦杰, 刘佐强 2013 62 024207]
[19] Kim S, Lee S J 2007 J Micromech. Microeng. 17 2157
[20] Satake S I, Kunugi T, Sato K, Ito T, Kanamori H, Taniguchi J 2006 Meas. Sci. Technol. 17 1647
[21] Wu Y C, Wu X C, Wang Z H, Grehan G, Chen L H, Cen K F 2011 Appl. Opt. 50 H297
[22] Cao L, Pan G, De Jong J, Woodward S, Meng H 2008 Appl. Opt. 47 4501
[23] Pan G, Meng H 2003 Appl. Opt. 42 827
[24] Fugal J, Shaw R 2009 Atmos. Meas. Tech. 2 259
[25] Yang Y, Li G, Tang L, Huang L 2012 Appl. Opt. 51 255
[26] Malek M, Allano D, Coëtmellec S, Zkul C, Lebrun D 2004 Meas. Sci. Technol. 15 699
[27] Meng H, Anderson W, Hussain F, Liu D D 1993 J. Opt. Soc. Am. A 10 2046
[28] Royer H 1974 Nouvelle Revued Optique 5 87
[29] Malek M, Allano D, Coëtmellec S, Lebrun D 2004 Opt. Express 12 2270
[30] Zhang Y, Shen G, Schroder A, Kompenhans J 2006 Opt. Eng. 45 075801
[31] Singh D K, Panigrahi P 2012 Appl. Opt. 51 3874
[32] Restrepo J F, Garcia-Sucerquia J 2013 Appl. Opt. 52 A310
[33] Natan T, Shaked, Joseph R, Adrian S 2007 Opt. Express 15 5754
[34] Kumar Nishchal N, Joseph J, Singh K 2004 Opt. Commun. 235 253
[35] Buraga-Lefebvre C, Coëtmellec S, Lebrun D, Zkul C 2000 Opt. Laser Eng. 33 409
[36] Anderson W, Diao H 1995 Appl. Opt. 34 249
[37] Lebrun D, Belaïd S, Zkul C 1999 Appl. Opt. 38 3730
[38] Wu X C, Meunier-Guttin-Cluzel S, Wu Y C, Saengkaew S, Lebrun D, Brunel M, Chen L H, Coetmellec S, Cen K F, Grehan G 2012 Opt. Commun. 285 3013
[39] Pu S L, Allano D, Patte-Rouland B, Malek M, Lebrun D, Cen K F 2005 Exp. Fluids 39 1
-
[1] Tanner D 2009 Microelectron. Reliab. 49 937
[2] Shi S, Chen D P, Jing Y P, Ou Y, Ye T C, Xu Q X 2010 Chin. Phys. B 19 76802
[3] Potrich C, Lunelli L, Forti S, Vozzi D, Pasquardini L, Vanzetti L, Panciatichi C, Anderle M, Pederzolli C 2010 Eur. Biophys. J. Biophy. 39 979
[4] Yao S, Tang X, Hsieh C, Alyousef Y, Vladimer M, Fedder G K, Amon C H 2006 Energy 31 636
[5] Langehanenberg P, Kemper B, Dirksen D, von Bally G 2008 Appl. Opt. 47 D176
[6] Mir T A, Shinohara H 2012 Anal. Biochem. 429 53
[7] Whalen S, Thompson M, Bahr D, Richards C, Richards R 2003 Sensor. Actuat. A Phys. 104 290
[8] Do K H, Jang S P 2010 Int. J. Heat Mass Trans. 53 2183
[9] Cai W, Wang F, van Veen A, Descorme C, Schuurman Y, Shen W, Mirodatos C 2010 Int. J. Hydrogen Energ. 35 1152
[10] Park J S, Choi C K, Kihm K D 2004 Exp. Fluids 37 105
[11] Elsinga G, Westerweel J, Scarano F, Novara M 2011 Exp. Fluids 50 825
[12] Wu Y C, Wu X C, Wang Z H, Chen L H, Cen K F 2011 Appl. Opt. 50 H22
[13] Garcia-Sucerquia J, Xu W, Jericho S K, Klages P, Jericho M H, Kreuzer H J 2006 Appl. Opt. 45 836
[14] Sheng J, Malkiel E, Katz J 2006 Appl. Opt. 45 3893
[15] Ferraro P, Coppola G, De Nicola S, Finizio A, Pierattini G 2003 Opt. Lett. 28 1257
[16] Wu Y L, Yang Y, Zhai H C, Ma Z H, Gai Q, Deng L J 2013 Acta Phys. Sin. 62 084203 (in Chinese) [吴永丽, 杨勇, 翟宏琛, 马忠洪, 盖琦, 邓丽军 2013 62 084203]
[17] Wang H Y, Liu F F, Liao W, Song X F, Yu M J, Liu Z Q 2013 Acta Phys. Sin. 62 054208 (in Chinese) [王华英, 刘飞飞, 廖薇, 宋修法, 于梦杰, 刘佐强 2013 62 054208]
[18] Wang H Y, Liu F F, Song X F, Liao W, Zhao B Q, Yu M J, Liu Z Q 2013 Acta Phys. Sin. 62 024207 (in Chinese) [王华英, 刘飞飞, 宋修法, 廖薇, 赵宝群, 于梦杰, 刘佐强 2013 62 024207]
[19] Kim S, Lee S J 2007 J Micromech. Microeng. 17 2157
[20] Satake S I, Kunugi T, Sato K, Ito T, Kanamori H, Taniguchi J 2006 Meas. Sci. Technol. 17 1647
[21] Wu Y C, Wu X C, Wang Z H, Grehan G, Chen L H, Cen K F 2011 Appl. Opt. 50 H297
[22] Cao L, Pan G, De Jong J, Woodward S, Meng H 2008 Appl. Opt. 47 4501
[23] Pan G, Meng H 2003 Appl. Opt. 42 827
[24] Fugal J, Shaw R 2009 Atmos. Meas. Tech. 2 259
[25] Yang Y, Li G, Tang L, Huang L 2012 Appl. Opt. 51 255
[26] Malek M, Allano D, Coëtmellec S, Zkul C, Lebrun D 2004 Meas. Sci. Technol. 15 699
[27] Meng H, Anderson W, Hussain F, Liu D D 1993 J. Opt. Soc. Am. A 10 2046
[28] Royer H 1974 Nouvelle Revued Optique 5 87
[29] Malek M, Allano D, Coëtmellec S, Lebrun D 2004 Opt. Express 12 2270
[30] Zhang Y, Shen G, Schroder A, Kompenhans J 2006 Opt. Eng. 45 075801
[31] Singh D K, Panigrahi P 2012 Appl. Opt. 51 3874
[32] Restrepo J F, Garcia-Sucerquia J 2013 Appl. Opt. 52 A310
[33] Natan T, Shaked, Joseph R, Adrian S 2007 Opt. Express 15 5754
[34] Kumar Nishchal N, Joseph J, Singh K 2004 Opt. Commun. 235 253
[35] Buraga-Lefebvre C, Coëtmellec S, Lebrun D, Zkul C 2000 Opt. Laser Eng. 33 409
[36] Anderson W, Diao H 1995 Appl. Opt. 34 249
[37] Lebrun D, Belaïd S, Zkul C 1999 Appl. Opt. 38 3730
[38] Wu X C, Meunier-Guttin-Cluzel S, Wu Y C, Saengkaew S, Lebrun D, Brunel M, Chen L H, Coetmellec S, Cen K F, Grehan G 2012 Opt. Commun. 285 3013
[39] Pu S L, Allano D, Patte-Rouland B, Malek M, Lebrun D, Cen K F 2005 Exp. Fluids 39 1
Catalog
Metrics
- Abstract views: 5782
- PDF Downloads: 512
- Cited By: 0