-
A novel class of the associated chaotic systems with switching and synchronization features is proposed in this paper. The system can be switched between the same-dimensional systems, can also be switched between different-dimensional systems, when the system is switched to a four-dimensional system, the synchronization between the system variables can be realized. Basic dynamic properties and the internal synchronization mechanism of the new system are investigated via theoretical analysis, numerical simulation, Lyapunov dimension and Lyapunov exponent spectrum. Finally, the hardware for circuit of the switching chaotic system is designed and realized by using Multisim software; the chaotic system and its synchronization characteristics are simulated and achieved at the same time. The numerical simulation and circuit simulation confirm that the switching chaotic system can be realized physically, and the system has shown rich dynamic properties.
-
Keywords:
- associated chaotic system /
- lyapunov exponent /
- switching /
- internal synchronization
[1] Kolumban G, Kennedy M P, Chua L O 1997 IEEE Trans. Circuits and Systems I 44 927
[2] Kolumban G, Kennedy M P, Chua L O 1998 IEEE Trans. Circuits and Systems 45 1129
[3] L J, Chen G 2002 Int. J. Bifur. Chaos 12 659
[4] L J, Chen G, Zhang S 2002 Int. J. Bifur. Chaos 12 1001
[5] Liu Y Z, Lin C S,Wang Z L 2010 Acta Phys. Sin. 59 8407 (in Chinese) [刘扬正, 林长圣, 王忠林 2010 59 8407]
[6] L J, Chen G, Cheng D 2004 Int. J. Bifur. Chaos 14 1507
[7] Zhou W, Xu Y, Lu H 2008 J. Phys. Lett. A 372 5773
[8] Liu C X, Liu T, Liu L 2004 Chaos Solitons Fract. 22 1031
[9] L J, Zhou T, Zhang S 2002 Chaos Solitons Fract. 14 529
[10] Zhang Y, Chen T Q, Chen B 2005 J. UEST China 34 29 (in Chinese) [张勇, 陈天麒, 陈滨 2005 电子科技大学学报 34 29]
[11] Gai R, Xia X, Chen G 2006 IEEE Trans. Auto. Contr. 51 1888
[12] Zhong G Q, Tang K S 2002 Int. J. Bifur. Chaos 12 1423
[13] Li Y, Chen G, Wks T 2005 IEEE Trans. Circuits and Systems II 52 204
[14] Ma X D, Bi Q S 2012 Acta Phys. Sin. 61 240506 (in Chinese) [马新东, 毕勤胜 2012 61 240506]
[15] Luo M W, Luo X H, Li H Q 2013 Acta Phys. Sin. 62 020512 (in Chinese) [罗明伟, 罗小华, 李华青 2013 62 020512]
[16] Zhou X Y 2012 Acta Phys. Sin. 61 030504 (in Chinese) [周小勇 2012 61 030504]
-
[1] Kolumban G, Kennedy M P, Chua L O 1997 IEEE Trans. Circuits and Systems I 44 927
[2] Kolumban G, Kennedy M P, Chua L O 1998 IEEE Trans. Circuits and Systems 45 1129
[3] L J, Chen G 2002 Int. J. Bifur. Chaos 12 659
[4] L J, Chen G, Zhang S 2002 Int. J. Bifur. Chaos 12 1001
[5] Liu Y Z, Lin C S,Wang Z L 2010 Acta Phys. Sin. 59 8407 (in Chinese) [刘扬正, 林长圣, 王忠林 2010 59 8407]
[6] L J, Chen G, Cheng D 2004 Int. J. Bifur. Chaos 14 1507
[7] Zhou W, Xu Y, Lu H 2008 J. Phys. Lett. A 372 5773
[8] Liu C X, Liu T, Liu L 2004 Chaos Solitons Fract. 22 1031
[9] L J, Zhou T, Zhang S 2002 Chaos Solitons Fract. 14 529
[10] Zhang Y, Chen T Q, Chen B 2005 J. UEST China 34 29 (in Chinese) [张勇, 陈天麒, 陈滨 2005 电子科技大学学报 34 29]
[11] Gai R, Xia X, Chen G 2006 IEEE Trans. Auto. Contr. 51 1888
[12] Zhong G Q, Tang K S 2002 Int. J. Bifur. Chaos 12 1423
[13] Li Y, Chen G, Wks T 2005 IEEE Trans. Circuits and Systems II 52 204
[14] Ma X D, Bi Q S 2012 Acta Phys. Sin. 61 240506 (in Chinese) [马新东, 毕勤胜 2012 61 240506]
[15] Luo M W, Luo X H, Li H Q 2013 Acta Phys. Sin. 62 020512 (in Chinese) [罗明伟, 罗小华, 李华青 2013 62 020512]
[16] Zhou X Y 2012 Acta Phys. Sin. 61 030504 (in Chinese) [周小勇 2012 61 030504]
Catalog
Metrics
- Abstract views: 6320
- PDF Downloads: 532
- Cited By: 0